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Abstract 

While investors are averse to high market volatility, there is possibility that high 

market volatility could fluctuate even further, which could drive investors to dump 

risky assets with high required returns compensated for the volatility uncertainty. In 

this paper, we develop an equilibrium model, in which, in addition to market beta and 

variance risk, the flight risk associated with uncertainty about market volatility (i.e., 

variance of market variance) affects asset pricing. To test our model, we use the 

high-frequency S&P 500 index option data to estimate a time series of the variance of 

market variance. Consistent with the model, we find that high volatility-of-volatility 

stocks (i.e., returns co-move more negatively with the variance of market variance) 

have higher expected returns. A hedge portfolio long in high volatility-of-volatility 

stocks and short in low volatility-of-volatility stocks yields a significant 10.5 percent 

average annual return. Furthermore, the volatility-of-volatility risk largely subsumes 

the valuation effect of volatility risk documented in previous studies. In sum, our 

model and test results provide a unified framework to better understand the 

importance of volatility-of-volatility risk in asset pricing. 

 

JEL classification: G12, G13, E44  
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1. Introduction 

It is well established that volatility is time-varying and tends to be high during 

stock market decline. The role of uncertainty during the recent financial crisis is also 

noted in financial press. For example,  

CRISES feed uncertainty. And uncertainty affects behaviour, which feeds the 

crisis. …all the indicators of uncertainty are at or near all-time highs. What is at 

work is not only objective, but also subjective uncertainty (e.g. the unknown 

unknowns).  

 —Olivier Blanchard, The Economist, January 29, 2009. 

The dual volatility concept has important implications for asset prices. 

Time-varying volatility-of-volatility affects portfolio decisions by inducing changes in 

investment opportunity set; it changes the expectation of future market returns and 

future market volatility. If volatility-of-volatility is a state variable, the Intertemporal 

CAPM (ICAPM; Merton, 1973) posits that volatility-of-volatility should be a priced 

factor in the cross-section of stocks. Intuitively, assets that co-vary positively with 

volatility-of-volatility are attractive to investors since these assets provide hedge for 

volatility risk during the market downturns. Moreover, it has been well established 

that market volatility is a priced factor (e.g. Coval and Shumway, 2001; Ang, Hodrick, 

Xing, and Zhang, 2006; and Adrian and Rosenberg, 2008) and therefore an increase in 

volatility-of-volatility induces volatility shock, leading to an increased required return 

and immediate stock price decline. Thus, investors require a return premium for a 

security that is suffer when the market volatility is high and when the whole market is 

uncertain about uncertainty.  

This paper develops a market-based three-factor model that helps explain how 

asset prices are affected by volatility risk and volatility-of-volatility risk. The model 

provides a unified framework that can explain the empirical findings that aggregate 
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volatility risk is priced in cross-sectional stock returns (e.g. Ang, Hodrick, Xing, and 

Zhang, 2006), that variance beta is priced in cross-sectional variance risk premiums 

(e.g. Carr and Wu, 2009), and that individual variance risk premiums can predict the 

cross-sectional stock returns (e.g. Bali and Hovakimian, 2009; Han and Zhou, 2011).  

Our model begins with a macroeconomic model that incorporates the seminal 

long-run risks (LRR) model of Bansal and Yaron (2004) and the variance-of-variance 

model of Bollerslev, Tauchen, and Zhou (2009). We solve the macro-finance model 

explicitly and derive the equilibrium aggregate prices. Then, we use the properties of 

the aggregate asset prices to characterize the macroeconomic risks, transforming the 

underlying macro-based model to a market-based model. The market-based model 

developed in this paper has several advantages. First, financial data provide useful 

information because asset prices tell us how market participants value risks. Moreover, 

financial data convey information to public in a timely fashion. Hence, the empirical 

design of our model is compatible with a large literature of multi-factor model 

explaining cross-sectional monthly stock returns (see, for instance, Fama and French, 

1993; Ang, Hodrick, Xing, and Zhang, 2006; Maio and Santa-Clara, 2012; among 

others).  

In our model, the expected stock return of a security i is determined by three 

sources of risks. These risks are associated with: (i) the return sensitivity to market 

return, ℂov𝑡[𝑟𝑖,𝑡+1, 𝑟𝑚,𝑡+1] ; (ii) the return sensitivity to market variance, 

ℂov𝑡[𝑟𝑖,𝑡+1, 𝑉𝑚,𝑡+1], where 𝑉𝑚,𝑡 = 𝕍ar𝑡[𝑟𝑚,𝑡+1]; and, (iii) the return sensitivity to 

variance of market variance, ℂov𝑡[𝑟𝑖,𝑡+1, 𝑄𝑚,𝑡+1], where 𝑄𝑚,𝑡 = 𝕍ar𝑡[𝑉𝑚,𝑡+1]. The 

first term measures the market risk of classical capital asset pricing model (CAPM; 

Sharpe, 1964; Lintner, 1965). The second term corresponds to the aggregate volatility 

risk of Ang, Hodrick, Xing, and Zhang (2006). The last term, which is the main focus 
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of this paper, measures the aggregate variance of variance risk. Hereafter the paper, 

we refer to the variance of variance as the volatility-of-volatility.  

The first goal of this paper is to investigate how market volatility-of-volatility 

risk affects cross-sectional stock returns. We test the predictions of the model using 

NYSE, AMEX, and NASDSQ listed stocks over the period 1996 to 2010. To 

implement our model, we develop a measure of market volatility-of-volatility using 

high frequency S&P 500 index option data.
1
 We convert the tick-by-tick option data 

to equally spaced five-minute observations and then use the model-free methodology
2
 

to estimate the market variance implied by index option prices for each five-minute 

interval. Thus, for each day, we estimate the market volatility-of-volatility by 

calculating the realized bipower variance from a series of five-minute model-free 

implied market variance within the day. The bipower variation, introduced by 

Bardorff-Nielsen and Shephard (2004), delivers a consistent estimator solely for the 

continuous component of the volatility-of-volatility whereas the jump component is 

isolated.
3
 In other words, our empirical results are robust to the potential jump risk 

embedded in volatility (see, for example, Pan, 2002; Eraker, 2008; Drechsler and 

Yaron 2011; among others). 

Consistent with the model, by sorting stocks into quintile portfolios based on 

return sensitivities to market volatility-of-volatility, we find that stocks in the highest 

quintile have lower stock returns than stocks in the lowest quintile by 0.88 percent per 

                                                      
1
 We use the volatility index, VIX index, from the Chicago Board of Options Exchange (CBOE) as the 

proxy for the aggregate volatility risk, which has been shown to be a significant priced factor in the 

cross-sectional stock returns (e.g. Ang, Hodrick, Xing, and Zhang, 2006). 
2
 It has been shown that the expectation of market variance can be inferred in a ‘model-free’ fashion 

from a collection of option prices without the use of a specific pricing model (see, for example, Carr 

and Madan 1998; Britten-Jones and Neuberger 2000; Bakshi, Kapadia, and Madan, 2003; Jiang and 

Tian 2005). The option implied information is forward-looking and the estimate can be obtained using 

daily or intraday option data. 
3
 Measures of realized jump based on the difference between realized variation and bipower variation 

have been proposed by Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), and 

Andersen, Bollerslev, and Diebold (2007). 
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month. Moreover, we also find evidence consistent with Ang, Hodrick, Xing, and 

Zhang (2006)’s findings that there is a significant difference of -0.87 percent per 

month between the stock returns with high volatility risk and the stocks with low 

volatility risk. Controlling for volatility risk, we still find that the market 

volatility-of-volatility carries a statistically significant return differentials of -0.97 

percent per month. On the other hand, controlling for market volatility-of-volatility 

risk, we find the return difference between high volatility risk stocks and low 

volatility risk stocks is still large in magnitude, at -0.68 percent per month. Running 

the cross-sectional regressions, we find that market volatility-of-volatility carry a 

statistically significant negative price of risk and largely subsumes the valuation effect 

of volatility risk. Thus, our findings suggest that market volatility-of-volatility is 

indeed an independently priced risk factor in the cross-sectional stock returns.  

To further explore the mechanism that volatility-of-volatility risk affects asset 

prices, we investigate whether the volatility-of-volatility risk contributes to the 

asymmetric correlations between returns and market volatility-of-volatility. We refer 

to the volatility-of-volatility feedback effect as the mechanism that if 

volatility-of-volatility is priced, an anticipated increase in volatility-of-volatility raises 

the required rate of return, implying an immediate stock price decline and higher 

future returns.
4
 Consistent with the channel of volatility-of-volatility feedback effect, 

we find that stocks that co-move more negatively with market volatility-of-volatility 

have lower returns before the portfolio formation and earn higher post-formation 

returns than stocks that co-move more positively. More importantly, we find that the 

return differentials (e.g. the returns of negative exposure stocks minus the returns of 

positive exposure stocks) before the portfolio formation are negatively correlated with 

                                                      
4
 Our definition of volatility-of-volatility feedback effect follows the definition of volatility feedback 

effect in the literature (see, e.g. French, Schwert, and Stambaugh 1987; Campbell and Hentschel 1992; 

Bekaert and Wu 2000; Wu 2001; Bollerslev, Sizova, and Tauchen, 2012; among others). 
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market volatility-of-volatility measured at the portfolio formation date while the 

correlations between market volatility-of-volatility and the post-formation return 

differentials are positive. Hence, market volatility-of-volatility seems to be the state 

variable that drives the feedback effect, supporting the time-varying risk premium 

hypothesis.  

The second goal of this paper is to investigate how volatility-of-volatility risk 

affects cross-sectional variance risk premiums. The variance risk premium is defined 

as the difference between risk-neutral variance and realized variance. Define 𝑉𝑖,𝑡 as 

the conditional variance of stock i at time t, 𝑉𝑖,𝑡 = 𝕍ar𝑡[𝑟𝑖,𝑡+1]. In our model, the 

variance risk premium of stock i , 𝑉𝑅𝑃𝑖,𝑡 ≡ 𝔼𝑡
ℚ[𝑉𝑖,𝑡+1] − 𝔼𝑡[𝑉𝑖,𝑡+1], is determined by 

two sources of risks: (i) the variance sensitivity to market variance, 

ℂov𝑡[𝑉𝑖,𝑡+1, 𝑉𝑚,𝑡+1]; and, (ii) the variance sensitivity to variance of market variance, 

ℂov𝑡[𝑉𝑖,𝑡+1, 𝑄𝑚,𝑡+1]. The first term corresponds to the variance beta of Carr and Wu 

(2009). The second term measures the risk that individual stock volatility co-moves 

with the market volatility of volatility. As shown by Carr and Wu (2009), variance risk 

premium corresponds to a trading strategy that shorts a swap on the realized variance; 

in particular, 𝔼𝑡
ℚ[𝑉𝑖,𝑡+1] is the price for the contract and 𝔼𝑡[𝑉𝑖,𝑡+1] is the expected 

payoff. Selling a volatility asset with high the volatility sensitivity to market 

volatility-of-volatility requires high insurance payment since the asset can hedge away 

the upward market volatility-of-volatility during the market downturns.  

Consistent with our model, by sorting stocks into quintile portfolios based on 

variance sensitivities to market volatility-of-volatility, we find that stock with high 

sensitivities have higher one-month variance risk premium than stocks with low 

sensitivities by 67.7 (in percentages squared) per month. The magnitude of the 

cross-sectional difference in variance risk premium is large compared to the market 

variance risk premium, which is 17.3 (in percentages squared) per month during our 
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sample period. We study how volatility-of-volatility affects the variance risk premium 

by running the cross-sectional regressions on the 25 testing portfolios formed on the 

variance sensitivities to market volatility-of-volatility. We find that the risk price of 

variance beta with respect to variance of market variance is significantly positive. 

These findings suggest that market volatility-of-volatility is a priced factor in the 

cross-sectional variance risk premium. 

Our study could also be motivated by the recent finding in Bollerslev, Tauchen, 

and Zhou (2009) that the variance risk premium of aggregate stock market returns has 

outstanding predictive power for future aggregate stock market return. The underlying 

mechanism in their work is that the state variable, the variance of economic variance, 

which affects expected market returns and solely determines the variance risk 

premium, delivers the predictability. Their work motivates several papers to focus on 

various economic mechanisms behind the return predictability afforded by variance 

risk premium. For example, Drechsler and Yaron (2011) show that jump shocks, in a 

more elaborate LRR model, capture the size and predictive power of the variance 

premium. Moreover, Drechsler (2013) show that model uncertainty has a large impact 

on variance risk premium, helping explain its power to predict stock returns. 

Nevertheless, none of prior studies provides evidence that volatility-of-volatility is a 

priced risk factor important for cross-sectional asset pricing.  

 Our paper is related to the pricing model with higher moments of the market 

return as risk factors studied by Chang, Christoffersen, and Jacobs (2013). They find 

that market skewness is a priced risk factor in the cross section of stock returns. Both 

our paper and their work extend the investigation of Ang, Hodrick, Xing, and Zhang 

(2006) and extract implied moments from index option prices. However, our results 

are robust to the inclusion of market skewness factor while the market skewness risk 

premium is much weaker in our sample period when we control for our market 
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volatility-of-volatility risk.  

Our paper is also related to but different from Han and Zhou (2012). They 

examine how firm-level variance risk premiums affect the stock returns in the 

cross-section, but they do not develop any theory to explain the dependencies. In 

contrast, our study investigates specifically the pricing of variance of market variance 

in the joint of cross-sectional stock returns and variance risk premium.  

 Finally, independent to our study, Baltussen, Van Bekkum, and Van Der Grient 

(2013) develop a measure of ambiguity, based on firm-level historical volatility of 

individual option-implied volatility (vol-of-vol). They find that vol-of-vol affects 

expected stock returns but their results cannot confirm that vol-of-vol is a priced risk 

factor. Our investigation differs with theirs in two aspects. First, our measure is based 

on intraday variation of market variance, resulting in a market volatility-of-volatility 

factor of daily frequency, while their vol-of-vol is based on historical daily 

information of implied volatility, resulting in a firm-level uncertainty measure of 

monthly frequency. Second, we find evidence for the rational pricing of market 

volatility-of-volatility risk, which sharply contrasts their ambiguity interpretation.  

The remainder of the paper is organized as follows. The next section describes 

the economic dynamics and develops our market-based three-factor model for the 

empirical implementation. Section 3 constructs the measure of market 

volatility-of-volatility. Section 4 describes the data and presents the summary 

statistics. In section 5, we show empirical evidence on the pricing of variance of 

market variance risk in cross-sectional stock returns. Section 6 provides evidence in 

cross-sectional variance risk premium. The return predictability for the aggregate 

market portfolio is examined in section 7. Finally, section 8 contains our concluding 

remarks. 
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2. A three-factor model 

This section describes the economic model. Our model begins with a 

macroeconomic model that incorporates the seminal long-run risks (LRR) model of 

Bansal and Yaron (2004) and the variance-of-variance model of Bollerslev, Tauchen, 

and Zhou (2009). We solve the macro-finance model explicitly and derive the 

equilibrium aggregate asset prices. Then, we use the properties of aggregate asset 

prices to characterize the macroeconomic risks and develop a market-based 

three-factor model for the cross-sectional asset prices. 

2.1. Economic dynamics and equilibrium aggregate asset prices 

The underlying economy is a discrete time endowment economy. The dynamics 

of consumption growth rate, 𝑔𝑡+1, and dividend growth rate, 𝑔𝑑,𝑡+1, are governed by 

the following process: 

 

𝑔𝑡+1 = 𝜇𝑔 + 𝑥𝑡 + 𝜎𝑡𝑧𝑔,𝑡+1 

𝑥𝑡+1 = 𝜌𝑥𝑥𝑡 + 𝜑𝑥𝜎𝑡𝑧𝑥,𝑡+1 

𝜎𝑡+1
2 = 𝜇𝜎 + 𝜌𝜎𝜎𝑡

2 + 𝑞𝑡𝑧𝜎,𝑡+1 

𝑞𝑡+1
2 = 𝜇𝑞 + 𝜌𝑞𝑞𝑡

2 + 𝜑𝑞𝑧𝑞,𝑡+1 

𝑔𝑑,𝑡+1 = 𝜇𝑑 + 𝜙𝑥𝑡 + 𝜑𝑑𝜎𝑡𝑧𝑑,𝑡+1 

𝑧𝑔,𝑡+1, 𝑧𝑥,𝑡+1, 𝑧𝜎,𝑡+1, 𝑧𝑞,𝑡+1, 𝑧𝑑,𝑡+1~
iid
𝑁(0,1) 

(1) 

where 𝑥𝑡+1 represents the long-run consumption growth, 𝜎𝑡+1
2  is the time-varying 

economic uncertainty, and 𝑞𝑡+1
2 is the economic volatility-of-volatility, which is the 

conditional variance of the economic uncertainty. The features of the long-run risk 

and the time-varying economic uncertainty is proposed by Bansal and Yaron (2004), 

while the additional feature of economic volatility-of-volatility is introduced by 

Bollerslev, Tauchen, and Zhou (2009). The representative agent is equipped with 

recursive preferences of Epstein and Zin (1989). Thus, the logarithm of the 

Intertemporal Marginal Rate of Substitution (IMRS), 𝑚𝑡+1, is  
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 𝑚𝑡+1 = 𝜃 log(𝛿) −
𝜃

𝜓
𝑔𝑡+1 + (𝜃 − 1)𝑟𝑎,𝑡+1, (2) 

where 𝑟𝑎,𝑡+1 is the return on consumption claim, and 𝜃 ≡ (1 − 𝛾)(1 − 1/𝜓)−1. We 

assume that 𝛾 > 1, and 𝜓 > 1, and therefore 𝜃 < 0. Based on Campbell and Shiller 

(1988) approximation, 𝑟𝑎,𝑡+1 ≈ 𝜅0 + 𝜅1𝑧𝑡+1 − 𝑧𝑡 + 𝑔𝑡+1, where 𝑧𝑡 is the logarithm 

of price–consumption ratio, which in equilibrium is an affine function of the state 

variables, 𝑧𝑡 = 𝐴0 + 𝐴𝑥𝑥𝑡 + 𝐴𝜎𝜎𝑡
2 + 𝐴𝑞𝑞𝑡

2.
5
 

 Substituting the equilibrium consumption return, 𝑟𝑎,𝑡+1, into the IMRS, the 

innovation in the pricing kernel 𝑚𝑡+1 is 

 
𝑚𝑡+1 − 𝔼𝑡[𝑚𝑡+1] = −𝜆𝑔𝜎𝑡𝑧𝑔,𝑡+1

− 𝜆𝑥𝜎𝑡𝑧𝑥,𝑡+1 − 𝜆𝜎𝑞𝑡𝑧𝜎,𝑡+1 − 𝜆𝑞𝜑𝑞𝑧𝑞,𝑡+1 
(3) 

where 𝜆𝑔 = 𝛾 > 0, 𝜆𝑥 = (1 − 𝜃)𝐴𝑥𝜅1𝜑𝑥 > 0, 𝜆𝜎 = (1 − 𝜃)𝐴𝜎𝜅1 < 0, 𝜆𝑞 =

(1 − 𝜃)𝐴𝑞𝜅1 < 0 . The parameters determine the prices for short-run risk (𝜆𝑔 ), 

long-run risk (𝜆𝑥), volatility risk (𝜆𝜎), and volatility of volatility risk (𝜆𝑞).  

An analogous expression holds for the stock market return, 𝑟𝑚,𝑡+1 = 𝜅0,𝑚 +

𝜅1,𝑚𝑧𝑚,𝑡+1 − 𝑧𝑚,𝑡 + 𝑔𝑑,𝑡+1 , where 𝑧𝑚,𝑡  is the log price–dividend ratio, which in 

equilibrium is an affine function of the state variables, 𝑧𝑚,𝑡 = 𝐴0,𝑚 + 𝐴𝑥,𝑚𝑥𝑡 +

𝐴𝜎,𝑚𝜎𝑡
2 + 𝐴𝑞,𝑚𝑞𝑡

2.
6
 Since we require that 𝜃 < 0, we have 𝐴𝑥,𝑚 > 0, 𝐴𝜎,𝑚 < 0, and 

𝐴𝑞,𝑚 < 0. The innovation in market return can be express as 

 

 

𝑟𝑚,𝑡+1 − 𝔼𝑡[𝑟𝑚,𝑡+1] = 𝜑𝑑𝜎𝑡𝑧𝑑,𝑡+1

+ 𝛽𝑚,𝑥𝜎𝑡𝑧𝑥,𝑡+1 + 𝛽𝑚,𝜎𝑞𝑡𝑧𝜎,𝑡+1 + 𝛽𝑚,𝑞𝜑𝑞𝑧𝑞,𝑡+1, 
(4) 

                                                      

5
 The equilibrium solutions for the coefficients are:  

𝐴𝑥 =
1−1/𝜓

1−𝜅1𝜌𝑥
> 0, 𝐴𝜎 =

𝜃((1−1/𝜓)2+𝐴𝑥
2𝜅1
2𝜑𝑥
2)

2(1−𝜅1𝜌𝜎)
< 0, and 𝐴𝑞 =

𝜃𝐴𝜎
2𝜅1
2

2(1−𝜅1𝜌𝑞)
< 0. 

6
 The equilibrium solutions for the coefficients are:  

𝐴𝑥,𝑚 =
𝜙−1/𝜓

1−𝜅1,𝑚𝜌𝑥
, 𝐴𝜎,𝑚 =

(1−𝜃)𝐴𝜎(1−𝜅1𝜌𝜎)+0.5𝐻𝑚,𝜎

1−𝜅1,𝑚𝜌𝜎
, and 𝐴𝑞,𝑚 =

(1−𝜃)𝐴𝑞(1−𝜅1𝜌𝑞)+0.5𝐻𝑚,𝑞

1−𝜅1,𝑚𝜌𝑞
, where 

𝐻𝑚,𝜎 = 𝛾
2 + 𝜑𝑑

2 + 𝜑𝑥
2(𝜆𝑥 − 𝛽𝑚,𝑥)

2
 and 𝐻𝑚,𝑞 = (𝜆𝜎 − 𝛽𝑚,𝜎)

2
.  
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where 𝛽𝑚,𝑥 = 𝐴𝑥,𝑚𝜅1,𝑚𝜑𝑥 > 0, 𝛽𝑚,𝜎 = 𝐴𝜎,𝑚𝜅1,𝑚 < 0, 𝛽𝑚,𝑞 = 𝐴𝑞,𝑚𝜅1,𝑚 < 0. It is 

straightforward now to derive the equity premium on the market portfolio,  

 
𝔼𝑡[𝑟𝑚,𝑡+1] − 𝑟𝑓,𝑡 + 0.5𝕍ar𝑡[𝑟𝑚,𝑡+1] = ℂov𝑡[𝑟𝑚,𝑡+1, −𝑚𝑡+1]

= 𝜆𝑥𝛽𝑚,𝑥𝜎𝑡
2 + 𝜆𝜎𝛽𝑚,𝜎𝑞𝑡

2 + 𝜆𝑞𝛽𝑚,𝑞𝜑𝑞
2. 

(5) 

The expected market return consists of three terms. The first two terms are long-run 

risk premium and volatility risk premium, which are the same as in Bansal and Yaron 

(2004), while the last term represents the volatility-of-volatility risk premium, which 

corresponds to the work of Bollerslev, Tauchen, and Zhou (2009).
7
 

 The conditional variance of market return is readily calculated as 𝑉𝑚,𝑡 ≡

𝕍ar𝑡[𝑟𝑚,𝑡+1] = (𝜑𝑑
2 + 𝛽𝑚,𝑥

2 )𝜎𝑡
2 + 𝛽𝑚,𝜎

2 𝑞𝑡
2 + 𝛽𝑚,𝑞

2 𝜑𝑞
2, and the process for innovations 

in market variance is 

 𝑉𝑚,𝑡+1 − 𝔼𝑡[𝑉𝑚,𝑡+1] = 𝛽𝑉,𝜎𝑞𝑡𝑧𝜎,𝑡+1 + 𝛽𝑉,𝑞𝜑𝑞𝑧𝑞,𝑡+1, (6) 

where 𝛽𝑉,𝜎 = 𝜑𝑑
2 + 𝛽𝑚,𝑥

2 , 𝛽𝑉,𝑞 = 𝛽𝑚,𝜎
2 . Thus, innovations in market variance are 

related to both the economic volatility shock and the economic volatility-of-volatility 

shock. It follows that the market volatility-of-volatility (e.g. the conditional variance 

of market variance) is 𝑄𝑚,𝑡 ≡ 𝕍ar𝑡[𝑉𝑚,𝑡+1] = 𝛽𝑉,𝜎
2 𝑞𝑡

2 + 𝛽𝑉,𝑞
2 𝜑𝑞

2, and the process for 

its innovations is 

 𝑄𝑚,𝑡+1 − 𝔼𝑡[𝑄𝑚,𝑡+1]  = 𝛽𝑄,𝑞𝜑𝑞𝑧𝑞,𝑡+1, (7) 

where 𝛽𝑄,𝑞 = 𝛽𝑉,𝜎
2 . Note that innovations in market volatility-of-volatility is solely 

determined by economic variance of variance shock with a scaling factor, 𝛽𝑄,𝑞. The 

market volatility-of-volatility-of-volatility (e.g. the conditional variance of variance of 

market variance), 𝑊𝑚,𝑡 ≡ 𝕍ar𝑡[𝑄𝑚,𝑡+1] = 𝛽𝑄,𝑞
2 𝜑𝑞

2, is constant in our model.  

 Next, we consider the market variance risk premium, which is defined as the 

                                                      
7
 Since we do not assume the square root process for the volatility-of-volatility as Bollerslev, Tauchen, 

and Zhou (2009) do, the volatility risk in the resulting equity premium does not confound with the 

volatility-of-volatility risk. 
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difference between the conditional variance under risk-neutral measure and the 

conditional variance under physical measure. Under the risk-neutral measure, which is 

characterized by the Radon-Nikodym derivative 
dℚ

𝑑ℙ
=

exp (𝑚𝑡+1)

𝔼𝑡[exp (𝑚𝑡+1)]
, the economy 

dynamics preserve the same structure but with a shift the mean.
8
 Therefore, our 

model implies that both the conditional variance of market return and the conditional 

variance of market variance are invariant under the risk neutral measure; that is, 

𝑉𝑚,𝑡
ℚ ≡ 𝕍ar𝑡

ℚ[𝑟𝑚,𝑡+1] = 𝑉𝑚,𝑡, and 𝑄𝑚,𝑡
ℚ ≡ 𝕍ar𝑡

ℚ[𝑉𝑚,𝑡+1] = 𝑄𝑚,𝑡. The market variance 

risk premium can be expressed as  

 

𝑉𝑅𝑃𝑚,𝑡 ≡ 𝔼𝑡
ℚ[𝑉𝑚,𝑡+1] − 𝔼𝑡[𝑉𝑚,𝑡+1]

= 𝛽𝑉,𝜎𝑞𝑡(𝔼𝑡
ℚ[𝑧𝜎,𝑡+1] − 𝔼𝑡[𝑧𝜎,𝑡+1])

+ 𝛽𝑉,𝑞𝜑𝑞(𝔼𝑡
ℚ[𝑧𝑞,𝑡+1] − 𝔼𝑡[𝑧𝑞,𝑡+1])

= −𝜆𝜎𝛽𝑉,𝜎𝑞𝑡
2 − 𝜆𝑞𝛽𝑉,𝑞𝜑𝑞

2. 

(8) 

The negative volatility risk price (𝜆𝜎) and the negative volatility-of-volatility risk 

price (𝜆𝑞) contributes to the positive market variance risk premium.  Moreover, the 

model predicts that the market variance risk premium is time-varying and is entirely 

driven by the dynamics of the economic volatility-of-volatility ( 𝑞𝑡
2 ), which 

corresponds to the work of Bollerslev, Tauchen, and Zhou (2009). 

2.2. Leverage effects, feedback effects, and return predictability  

The model endogenously generates an asymmetric return-volatility dependency. 

In the literature, leverage effect (e.g. Black, 1976; Christie, 1982; among others) 

refers to the negative contemporaneous return-volatility correlation, while the 

                                                      
8
 That is,  

𝑔𝑡+1 = (𝜇𝑔 − 𝛾𝜎𝑡
2) + 𝑥𝑡 + 𝜎𝑡𝑧𝑔,𝑡+1

ℚ
, 

𝑥𝑡+1 = −𝜆𝑥𝜎𝑡
2 + 𝜌𝑥𝑥𝑡 + 𝜑𝑥𝜎𝑡𝑧𝑥,𝑡+1

ℚ
, 

𝜎𝑡+1
2 = (𝜇𝜎 − 𝜆𝜎𝑞𝑡

2) + 𝜌𝜎𝜎𝑡
2 + 𝑞𝑡𝑧𝜎,𝑡+1

ℚ
, 

𝑞𝑡+1
2 = (𝜇𝑞 − 𝜆𝑞𝜑𝑞

2) + 𝜌𝑞𝑞𝑡
2 + 𝜑𝑞𝑧𝑞,𝑡+1

ℚ
, 

𝑔𝑑,𝑡+1 = 𝜇𝑑 + 𝜙𝑥𝑡 + 𝜑𝑑𝜎𝑡𝑧𝑑,𝑡+1
ℚ

, 

where 𝑧𝑔,𝑡+1
ℚ

= 𝛾𝜎𝑡 + 𝑧𝑔,𝑡+1, 𝑧𝑥,𝑡+1
ℚ

= 𝜆𝑥𝜎𝑡 + 𝑧𝑥,𝑡+1, 𝑧𝜎,𝑡+1
ℚ

= 𝜆𝜎𝑞𝑡 + 𝑧𝜎,𝑡+1, 𝑧𝑞,𝑡+1
ℚ

= 𝜆𝑞𝜑𝑞 + 𝑧𝑞,𝑡+1, 

and  𝑧𝑑,𝑡+1
ℚ

= 𝑧𝑑,𝑡+1. 
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mechanism of volatility feedback effect (see, e.g. Campbell and Hentschel 1992; 

Bekaert and Wu 2000; Wu 2001; Bollerslev, Sizova, and Tauchen, 2012; among 

others) is often used to explain the positive correlations between future returns and 

volatility. Our model is in line with the leverage effect and the feedback effect; that is, 

a straightforward calculation shows that  

 

 

ℂov𝑡[𝑟𝑚,𝑡+1, 𝑉𝑚,𝑡+1] = 𝛽𝑚,𝜎𝛽𝑉,𝜎𝑞𝑡
2 + 𝛽𝑚,𝑞𝛽𝑉,𝑞𝜑𝑞

2 < 0, 

ℂ𝑜𝑣𝑡[𝑟𝑚,𝑡+1+𝑗, 𝑉𝑚,𝑡+1] = ℂ𝑜𝑣𝑡 [𝔼𝑡+1 [… 𝔼𝑡+𝑗[𝑟𝑚,𝑡+1+𝑗]] , 𝑉𝑚,𝑡+1]    

= −𝜅𝜎  𝜌𝜎
𝑗
𝛽𝑚,𝜎𝛽𝑉,𝜎𝑞𝑡

2 − 𝜅𝑞𝜌𝑞
𝑗
 𝛽𝑚,𝑞𝛽𝑉,𝑞𝜑𝑞

2 > 0 

(9) 

where 𝜅𝜎 = (1 − 𝜅1,𝑚𝜌𝜎)/𝜅1,𝑚 and 𝜅𝑞 = (1 − 𝜅1,𝑚𝜌𝑞)/𝜅1,𝑚. In the absence of the 

time-varying economic volatility-of-volatility (e.g. when 𝑞𝑡
2 is constant and 𝜑𝑞

2=0), 

the second term of ℂov𝑡[𝑟𝑚,𝑡+1, 𝑉𝑚,𝑡+1]  and the second term of 

ℂ𝑜𝑣𝑡[𝑟𝑚,𝑡+1+𝑗, 𝑉𝑚,𝑡+1] are reduced to zero, leading both of the two covariances to 

smaller values. Thus, the dynamics of economic volatility-of-volatility amplifies the 

leverage effect and the volatility feedback effect.  

Moreover, our model implies the existence of leverage effect and feedback effect 

related to market volatility-of-volatility. The contemporaneous and forward 

correlations between market return and market volatility-of-volatility can be 

expressed as  

 

ℂov𝑡[𝑟𝑚,𝑡+1, 𝑄𝑚,𝑡+1] = 𝛽𝑚,𝑞𝛽𝑄,𝑞𝜑𝑞
2 < 0, 

ℂ𝑜𝑣𝑡[𝑟𝑚,𝑡+1+𝑗, 𝑄𝑚,𝑡+1] = −𝜅𝑞𝜌𝑞
𝑗
 𝛽𝑚,𝑞𝛽𝑄,𝑞𝜑𝑞

2 > 0. 
(10) 

If volatility-of-volatility is priced, an anticipated increase in volatility-of-volatility 

raises the required rate of return, implying an immediate stock price decline and 

higher future returns. Thus, the above expressions provide important and directly 

testable implications for the volatility-of-volatility risk premium. 
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 It is instructive to consider the return predictability afforded by the market 

variance risk premium, which is the main proposition in the pioneer work of 

Bollerslev, Tauchen, and Zhou (2009). In our model, the process for innovations in the 

market variance risk premium is  

 𝑉𝑅𝑃𝑚,𝑡+1 − 𝔼𝑡[𝑉𝑅𝑃𝑚,𝑡+1]  = −𝜆𝜎𝛽𝑉,𝜎𝜑𝑞𝑧𝑞,𝑡+1, (11) 

which is entirely determined by economic volatility-of-volatility shock like the market 

volatility-of-volatility is. Thus, similar to Bollerslev, Tauchen, and Zhou (2009), 

market variance risk premium can predict the future market return as follows,  

 ℂ𝑜𝑣𝑡[𝑟𝑚,𝑡+1+𝑗, 𝑉𝑅𝑃𝑚,𝑡+1] = 𝜅𝑞𝜌𝑞
𝑗
 𝛽𝑚,𝑞𝜆𝜎𝛽𝑉,𝜎𝜑𝑞

2 > 0. (12) 

In the presence of jumps, however, as indicated in Drechsler and Yaron (2011), the 

market variance risk premium is affected by risk of jumps that is also likely to deliver 

the return predictability. In which case, the market variance risk premium is no longer 

solely driven by the economic volatility-of-volatility, lowering the testing power of 

Bollerslev, Tauchen, and Zhou (2009) for the return predictability afforded by market 

variance risk premium against an alternative source of risk. Nevertheless, the 

continuous component of the market volatility-of-volatility is still corresponding to 

the economic volatility-of-volatility. Thus, for the testing power consideration, the 

empirical strategy of our model focuses on the identification of the continuous 

component of the market volatility-of-volatility. 

2.3. A market-based three-factor model for individual stocks 

We assume that the innovations in stock return i is 

 𝑟𝑖,𝑡+1 − 𝔼𝑡[𝑟𝑖,𝑡+1] = 𝛽𝑖,𝑥𝜎𝑡𝑧𝑥,𝑡+1 + 𝛽𝑖,𝜎𝑞𝑡𝑧𝜎,𝑡+1 + 𝛽𝑖,𝑞𝜑𝑞𝑧𝑞,𝑡+1. (13) 

Given the expression for the pricing kernel in equation(3), the expected stock return 

can be written as 
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𝔼𝑡[𝑟𝑖,𝑡+1] − 𝑟𝑓,𝑡 + 0.5𝕍ar𝑡[𝑟𝑖,𝑡+1]

= 𝛽𝑖,𝑥𝜆𝑥𝜎𝑡
2 + 𝛽𝑖,𝜎𝜆𝜎𝑞𝑡

2 + 𝛽𝑖,𝑞𝜆𝑞𝜑𝑞
2. 

(14) 

Thus, the expected stock return is determined by three sources of economic risks: 

economic long-run risk (𝛽𝑖,𝑥 ), economic volatility risk (𝛽𝑖,𝜎) , and economic 

volatility-of- volatility risk (𝛽𝑖,𝑞). 

 We now use the properties of the aggregate asset prices to characterize the 

macroeconomic risks. First of all, in equilibrium, the market volatility-of-volatility 

risk, which is the return covariance with respect to variance of market variance, is 

solely determined by the economic volatility-of-volatility risk (𝛽𝑖,𝑞), i.e. 

 ℂov𝑡[𝑟𝑖,𝑡+1, 𝑄𝑚,𝑡+1] = 𝛽𝑖,𝑞𝛽𝑄,𝑞𝜑𝑞
2. (15) 

Furthermore, the return sensitivities with respect to market variance and with respect 

to market return provide additional information for the economic volatility risk and 

the long-run risk; that is,  

 ℂov𝑡[𝑟𝑖,𝑡+1, 𝑉𝑚,𝑡+1] = 𝛽𝑖,𝜎𝛽𝑉,𝜎𝑞𝑡
2 + 𝛽𝑖,𝑞𝛽𝑉,𝑞𝜑𝑞

2, (16) 

 ℂov𝑡[𝑟𝑖,𝑡+1, 𝑟𝑚,𝑡+1] = 𝛽𝑖,𝑥𝛽𝑚,𝑥𝜎𝑡
2 + 𝛽𝑖,𝜎𝛽𝑚,𝜎𝑞𝑡

2 + 𝛽𝑖,𝑞𝛽𝑚,𝑞𝜑𝑞
2. (17) 

Substituting out the economic risks in (14) with (15), (16) and (17) gives us the 

market-based three-factor model: 

 

𝔼𝑡[𝑟𝑖,𝑡+1] − 𝑟𝑓,𝑡 + 0.5𝕍ar𝑡[𝑟𝑖,𝑡+1]

= 𝜆𝑚ℂov𝑡[𝑟𝑖,𝑡+1, 𝑟𝑚,𝑡+1] + 𝜆𝑉ℂov𝑡[𝑟𝑖,𝑡+1, 𝑉𝑚,𝑡+1]

+ 𝜆𝑄ℂov𝑡[𝑟𝑖,𝑡+1, 𝑄𝑚,𝑡+1], 

(18) 

where  𝜆𝑚 =
𝜆𝑥
𝛽𝑚,𝑥

, 𝜆𝑉 =
𝜆𝜎 − 𝜆𝑚𝛽𝑚,𝜎

𝛽𝑉,𝜎
, 𝜆𝑄 =

𝜆𝑞 − 𝜆𝑉𝛽𝑉,𝑞 − 𝜆𝑚𝛽𝑚,𝑞

𝛽𝑄,𝑞
. (19) 

Thus, the expected stock return is now determined by three sources of risks related to 

aggregate asset prices. The first term measures the market risk of classical capital 

asset pricing model (CAPM; Sharpe, 1964; Lintner, 1965). The second term 
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corresponds to the aggregate volatility risk of Ang, Hodrick, Xing, and Zhang (2006). 

The last term, which is the main focus of this paper, measures the aggregate volatility 

of volatility risk. The resulting three risk prices in our market-based model, 𝜆𝑚, 𝜆𝑉, 

and 𝜆𝑄, are related to the three economic risk prices with a linear transformation. 

The market-based model developed in this paper has several advantages. First, 

financial data provide useful information because asset prices tell us how market 

participants value risks. Moreover, financial data convey information to public in a 

timely fashion. Hence, the empirical design of our model is compatible with a large 

literature of multi-factor model explaining cross-sectional monthly stock returns (see, 

for instance, Fama and French, 1993; Ang, Hodrick, Xing, and Zhang, 2006; Maio 

and Santa-Clara, 2012; among others).  

It is constructive to establish the individual variance risk premiums under the 

proposed model. The conditional variance of the time 𝑡 to 𝑡 + 1 return of stock i 

(𝑟𝑖,𝑡+1) and the innovations in conditional variance i can be expressed as  

 

𝑉𝑖,𝑡 ≡ 𝕍ar𝑡[𝑟𝑖,𝑡+1] = 𝛽𝑖,𝑥
2 𝜎𝑡

2 + 𝛽𝑖,𝜎
2 𝑞𝑡

2 + 𝛽𝑖,𝑞
2 𝜑𝑞

2 

𝑉𝑖,𝑡+1 − 𝔼𝑡[𝑉𝑖,𝑡+1] = 𝛽𝑖,𝜎
𝑉 𝑞𝑡𝑧𝜎,𝑡+1 + 𝛽𝑖,𝑞

𝑉 𝜑𝑞𝑧𝑞,𝑡+1 
(20) 

where 𝛽𝑖,𝜎
𝑉 = 𝛽𝑖,𝑥

2  and 𝛽𝑖,𝑞
𝑉 = 𝛽𝑖,𝜎

2 . It follows that  

 𝑉𝑅𝑃𝑖,𝑡 ≡ 𝔼𝑡
ℚ[𝑉𝑖,𝑡+1] − 𝔼𝑡[𝑉𝑖,𝑡+1] = −𝜆𝜎𝛽𝑖,𝜎

𝑉 𝑞𝑡
2 − 𝜆𝑞𝛽𝑖,𝑞

𝑉 𝜑𝑞
2, (21) 

which suggests that the individual variance risk premiums are determined by the 

conditional variance’s betas with respect to the economic volatility risk (𝛽𝑖,𝜎
𝑉 ) and 

with respect to the economic volatility-of-volatility risk (𝛽𝑖,𝑞
𝑉 ).  

To derive a market-based variance risk premium model, we consider the variance 

sensitivities with respect to market variance and with respect to market 

volatility-of-volatility, which in the equilibrium are given by 
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 ℂov𝑡[𝑉𝑖,𝑡+1, 𝑄𝑚,𝑡+1] = 𝛽𝑖,𝑞
𝑉 𝛽𝑄,𝑞𝜑𝑞

2, (22) 

 ℂov𝑡[𝑉𝑖,𝑡+1, 𝑉𝑚,𝑡+1] = 𝛽𝑖,𝜎
𝑉 𝛽𝑉,𝜎𝑞𝑡

2 + 𝛽𝑖,𝑞
𝑉 𝛽𝑉,𝑞𝜑𝑞

2. (23) 

Similarly, substituting out the economic risks in (21) with (22) and (23) gives us the 

market-based two-factor model for the individual variance risk premium: 

 𝑉𝑅𝑃𝑖,𝑡 = −𝜆𝑉
𝑉ℂov𝑡[𝑉𝑖,𝑡+1, 𝑉𝑚,𝑡+1] − 𝜆𝑄

𝑉ℂov𝑡[𝑉𝑖,𝑡+1, 𝑄𝑚,𝑡+1], (24) 

where  𝜆𝑉
𝑉 =

𝜆𝜎
𝛽𝑉,𝜎

 and 𝜆𝑄
𝑉 =

𝜆𝑞 − 𝜆𝑉
𝑉𝛽𝑉,𝑞

𝛽𝑄,𝑞
. (25) 

Therefore, the individual variance risk premium is now determined by two sources of 

risks related to aggregate asset prices. The first term corresponds to the variance beta 

of Carr and Wu (2009). The second term measures the risk that individual stock 

volatility co-moves with the aggregate volatility of volatility. The resulting two risk 

prices associated with the individual variance risk premium, 𝜆𝑉
𝑉 and 𝜆𝑄

𝑉 , are also 

related to the corresponding economic risk prices, 𝜆𝜎  and 𝜆𝑞 , with a linear 

transformation. 

 Our model implies that the three aggregate asset prices are inter-dependent and 

so are the market-based risks in the individual expected return and variance risk 

premium. Moreover, the risk prices for the high moments are offset by the risk prices 

for the low moments. While this property is interesting, it also complicates the task of 

distinguishing the relative impacts from the underlying sources of risks. Nevertheless, 

our market-based model can be alternatively implemented using orthogonalized 

aggregate asset prices as risk factors. Define 𝑄̃𝑚,𝑡+1 = 𝑄𝑚,𝑡+1, 𝑉̃𝑚,𝑡+1 = 𝑉𝑚,𝑡+1 −

𝔼[𝑉𝑚,𝑡+1|𝑄𝑚,𝑡+1], and 𝑟̃𝑚,𝑡+1 = 𝑟𝑚,𝑡+1 − 𝔼[𝑟𝑚,𝑡+1|𝑉𝑚,𝑡+1, 𝑄𝑚,𝑡+1]. Thus, each of the 

market-based risks is directly linked to the counterpart of the underlying economic 

risks. In which case, the expected stock return is represented by 

𝜆̃𝑚ℂov𝑡[𝑟𝑖,𝑡+1, 𝑟̃𝑚,𝑡+1] + 𝜆̃𝑉ℂov𝑡[𝑟𝑖,𝑡+1, 𝑉̃𝑚,𝑡+1] + 𝜆̃𝑄ℂov𝑡[𝑟𝑖,𝑡+1, 𝑄̃𝑚,𝑡+1]  and the 
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individual variance risk premium can also be expressed by 𝜆̃𝑉ℂov𝑡[𝑉𝑖,𝑡+1, 𝑉̃𝑚,𝑡+1] +

𝜆̃𝑄ℂov𝑡[𝑉𝑖,𝑡+1, 𝑄̃𝑚,𝑡+1]. Thus, the resulting risk prices preserve the sign of the original 

economic risk prices; that is, 𝜆̃𝑚 = 𝜆𝑥 𝛽𝑚,𝑥⁄ , 𝜆̃𝑉 = 𝜆𝜎 𝛽𝑉,𝜎⁄ , 𝜆̃𝑄 = 𝜆𝑞 𝛽𝑄,𝑞⁄ . 

3. Estimation of variance of market variance 

In previous section, we propose a market-based three-factor model, which 

requires the information of market return, market variance, and variance of market 

variance. To proxy for the first two factors, we use CRSP value-weighted market 

index and CBOE VIX index, which have been widely used in the literature ( see, for 

example, Ang, Hodrick, Xing, and Zhang, 2006; Chang, Christoffersen, and Jacobs, 

2013; Bollerslev, Tauchen, and Zhou, 2009; among others). In this study, we estimate 

the variance of market variance by calculating the realized bipower variation from a 

series of five-minute model-free implied variances, using the high-frequency S&P 500 

index option data. The details of our empirical settings are described as follows. 

First of all, we extract the model-free implied variance, using the spanning 

methodology proposed by Carr and Madan (2001), Bakshi and Madan (2000), Bakshi, 

Kapadia, and Madan (2003), and Jiang and Tian (2005). Bakshi, Kapadia, and Madan 

(2003) show that the price of a 𝜏-maturity return variance contract, which is the 

discounted conditional expectation of the square of market return under the 

risk-neutral measure, can be spanned by a collection of out-of-money call options and 

out-of-money put options,  

 

𝑉𝑡
_

(𝜏) ≡ 𝔼𝑡
ℚ [e−𝑟𝑓,𝑡Log [

𝑆𝑡+𝜏
𝑆𝑡
]
2

]

= ∫
2(1 − log[𝐾 𝑆𝑡⁄ ])

𝐾2

∞

𝑆𝑡

𝐶𝑡(𝐾; 𝜏) ⅆ𝐾

+ ∫
2(1 + log[𝐾 𝑆𝑡⁄ ])

𝐾2

𝑆𝑡

0

𝑃𝑡(𝐾; 𝜏) ⅆ𝐾, 

(26) 
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where 𝐶𝑡(𝐾; 𝜏) and 𝑃𝑡(𝐾; 𝜏) are the prices of European calls and puts at time 𝑡 

written on the underlying stock with strike price K and expiration date at 𝑡 + τ. The 

conditional variance of market return can be calculated by 

 𝐼𝑉𝑡(𝜏) = e
𝑟𝑓,𝑡𝑉𝑡

_

(𝜏) − 𝜇𝑡(𝜏)
2,  (27) 

where 𝜇𝑡(𝜏) satisfies the risk-neutral valuation relationship, which is related to the 

first four risk-neutral moments of market returns as described in equation (39) of 

Bakshi, Kapadia, and Madan (2003). 

 Second, we use the model-free realized bipower variance, introduced by 

Bardorff-Nielsen and Shephard (2004), to estimate the variance of market variance. 

Define the intraday stock return as 𝑟𝑡+1,𝑗 ≡ log[𝑆𝑡+𝑗 𝑀⁄ ] − log[𝑆𝑡+(𝑗−1) 𝑀⁄ ] , 𝑗 =

1, . . . , 𝑀, where M is the sampling frequency per trading day. Bardorff-Nielsen and 

Shephard (2004) study two measures of realized variations; the first one is the 

realized variation, 𝑅𝑉𝑡+1, and the second one is the bipower variation, 𝐵𝑉𝑡+1: 

 𝑅𝑉𝑡+1 =∑ 𝑟𝑡+1,𝑗
2

𝑀

𝑗=1
, (28) 

 

 
𝐵𝑉𝑡+1 =

𝜋

2
(
𝑀

𝑀 − 1
)∑ |𝑟𝑡+1,𝑗||𝑟𝑡+1,𝑗−1|

𝑀

𝑗=2
. (29) 

Andersen, Bollerslev, and Diebold (2002) show that the realized variance converges 

to the integrated variance plus the jump contributions, i.e.  

 𝑅𝑉𝑡+1
𝑀→∞
→   ∫ 𝜎2(𝑠) ⅆ𝑠

𝑡+1

𝑡

+∑ 𝐽𝑡+1,𝑗
2

𝑁𝑡+1

𝑗=1
, (30) 

where 𝑁𝑡+1 is the number of return jumps within day t+1 and 𝐽𝑡+1,𝑗
2  is the jump size. 

Moreover, Bardorff-Nielsen and Shephard (2004) show that  

 𝐵𝑉𝑡+1
𝑀→∞
→   ∫ 𝜎2(𝑠) ⅆ𝑠

𝑡+1

𝑡

. (31) 

In other words, bipower variation provides a consistent estimator of the integrated 

variance solely for the diffusion part. 
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 Our measure for variance of market variance is estimated from a series of 

five-minute based model-free implied variances. The intraday model-free implied 

variances are calculated using equation (27), which is denoted as 𝐼𝑉𝑡+𝑗 𝑀⁄ (𝜏), 𝑗 =

1, . . . , 𝑀. Since the process of market variance is a (semi-)martingale, we apply the 

bipower variation formula on the changes in annualized model-free implied variances 

and obtain a measure for variance of market variance: 

 𝑉𝑜𝑉𝑡+1(𝜏) =
𝜋

2
(
𝑀

𝑀 − 1
)∑ |𝛥𝑣𝑡+1,𝑗(𝜏)||𝛥𝑣𝑡+1,𝑗−1(𝜏)|

𝑀

𝑗=2
 (32) 

where Δv𝑡+1,𝑗(𝜏) ≡
365

𝜏
[𝐼𝑉𝑡+𝑗 𝑀⁄ (𝜏) − 𝐼𝑉𝑡+(𝑗−1) 𝑀⁄ (𝜏)] . In this way, our empirical 

results will not be affected by the volatility jumps (or the return jumps embedded in 

the volatility). 

4. Data and descriptive statistics 

4.1. Data description 

We use the tick-by-tick quoted data on S&P 500 index (SPX) options from 

CBOE’s Market Data Report (MDR) tapes over the time period from January 1996 to 

December 2010. The underlying SPX prices are also provided in the tapes. We obtain 

daily data from OptionMetrics for equity options and S&P 500 index options. We use 

the Zero Curve file, which contains the current zero-coupon interest rate curve, and 

the Index Dividend file, which contains the current dividend yield, from 

OptionMetrics to calculate the implied volatility for each tick-by-tick data from 

CBOE’s MDR tapes. Daily and monthly stock return data are from CRSP while 

intraday transactions data are from TAQ data sets. Financial statement data are from 

COMPUSTAT. Fama and French (1993) factors and their momentum UMD factor are 

obtained from the online data library of Ken French.
9
 VIX index is obtained from the 

                                                      
9
 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 



20 
 

website of CBOE.
10

 While we use the ‘new’ VIX index to calculate the market 

variance risk premium as proposed by Bollerslev, Tauchen, and Zhou (2009), we also 

use the ‘old’ VIX, which is based on the S&P 100 options and Black–Scholes implied 

volatilities, as our volatility factor, following Ang, Hodrick, Xing, and Zhang (2006). 

We use the index option prices from the Option Price file to replicate the market 

skewness factor and the market kurtosis factor of Chang, Christoffersen, and Jacobs 

(2013). 

We follow the literature (see, for example, Jiang and Tian 2005; Chang, 

Christoffersen, and Jacobs, 2013; among others) to filter out index option prices that 

violate the arbitrage bounds.
11

 We also eliminate in-the-money options (e.g. put 

options with K/S>1.03 and call options with K/S<1.03) because prior study suggests 

that they are less liquid. We use the daily SPX low and high prices, downloaded from 

Yahoo Finance,
12

 to filter out the MDR data that are outside the [low, high] interval.  

For the computation of the market volatility-of-volatility, we first partition the 

tick-by-tick S&P500 index options data into five-minute intervals. For each maturity 

within each interval, we linearly interpolate implied volatilities for a fine grid of one 

thousand moneyness levels (K/S) between 0.01% and 300%
13

 and use equations (26) 

and (27) to estimate the model-free implied variance. We then use linearly interpolate 

maturities to obtain the estimate at a fixed 30-day horizon. For each day, our measure 

for market volatility-of-volatility (VoV) is calculated by using the bipower variation 

formula of equation (32) with the 81 within-day five-minute annualized 30-day 

                                                      
10

 http://www.cboe.com/micro/vix/historical.aspx 
11

 Moreover, we eliminate all observations for which the ask price is lower than the bid price, the bid 

price is equal to zero, or the average of the bid and ask price is less than 3/8. 
12

 http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices  
13

 For moneyness levels below or above the available moneyness level in the market, we use the 

implied volatility of the lowest or highest available strike price. 
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model-free implied variance estimates covering the normal CBOE trading hours from 

8:30 a.m. to 3:15 p.m. Central Time.  

The market variance risk premium (𝑉𝑅𝑃𝑚,𝑡), following Bollerslev, Tauchen, and 

Zhou (2009), is defined as the difference between the ex-ante implied variance (𝐼𝑉𝑚,𝑡) 

and the ex-post realized variance (𝑅𝑉𝑚,𝑡), i.e. 𝑉𝑅𝑃𝑚,𝑡 ≡ 𝐼𝑉𝑚,𝑡 − 𝑅𝑉𝑚,𝑡. We focus on 

a fixed maturity of 30 days. Market implied variance (𝐼𝑉𝑚,𝑡) is measured by the 

squared ‘new’ VIX index divided by 12. Summation of SPX five-minute squared 

logarithmic returns are used to calculate the market realized variance (𝑅𝑉𝑚,𝑡). With 

eighty five- minute intervals per trading day and the overnight return, we construct the 

daily market realized variance, using a rolling window of 22 trading days starting 

from the current day.  

We construct the individual model-free implied variance (𝐼𝑉𝑖,𝑡) using equity 

options data from the Volatility Surface file that provides Black-Scholes implied 

volatilities for options with standard maturities and delta levels. The individual 

implied variance is estimated by applying the same methodology that we use for the 

index options on the equity options data with 30-day maturity.  

To compute the individual realized variance (𝑅𝑉𝑖,𝑡 ), we extract from TAQ 

database the intraday transaction and quote data within the normal trading hours from 

9:30 a.m. to 4:00 p.m. Eastern Time. We first adopt the step-by-step cleaning 

procedures proposed by Bardorff-Nielsen, Hansen, Lunde, and Shephard (2009) to 

screen the TAQ high frequency data,
14

 and then we follow Sadka (2006) to remove 

quotes in which the quoted spread is more than 25% and remove trades in which the 

absolute value of one-tick return is more than 25%. The resulting 78 five-minute 

trades and quotes per trading day in a rolling window of 22 trading days are 

                                                      
14

 We apply the rules of P1, P2, P3, Q1, Q2, T1, T2, and T3 as described in the section 3.1 of 

Bardorff-Nielsen, Hansen, Lunde, and Shephard (2009) to carry out the cleaning procedures. 
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separately used to calculate the trade-based daily individual realized variance (𝑅𝑉𝑖,𝑡
𝑇 ) 

and the quote-based daily individual realized variance (𝑅𝑉𝑖,𝑡
𝑄

). To avoid the effect from 

stale prices in trades or in quotes, we further require that the both the number of 

five-minute trades and that of quotes in the 22-day rolling window should be more 

than 78×11=858. To conserve space, we will focus on the trade-based realized 

variance, i.e. 𝑅𝑉𝑖,𝑡 = 𝑅𝑉𝑖,𝑡
𝑇 ,  while the results for the quote-based measure are 

available upon request.  

We estimate the monthly expected individual variance risk premium (𝐸𝑉𝑅𝑃𝑖,𝑡) 

through a forecast model. We adopt a linear forecast model, following Drechsler and 

Yaron (2011) and Han and Zhou (2012), to estimate the expected realized variance 

(𝐸𝑅𝑉𝑖,𝑡) with the lagged realized variance and the lagged model-free implied variance 

measured at the end of the month.
15

 Thus, the expected individual variance risk 

premium is defined as 𝐸𝑉𝑅𝑃𝑖,𝑡 = 𝐼𝑉𝑖,𝑡 − 𝐸𝑅𝑉𝑖,𝑡. 

To implement our empirical model, we construct innovations in market moments. 

First, following Ang, Hodrick, Xing, and Zhang (2006), innovations in market 

volatility (𝛥𝑉𝐼𝑋) is measured by its first order difference, i.e. 𝛥𝑉𝐼𝑋𝑡+1 = 𝑉𝐼𝑋𝑡+1 −

𝑉𝐼𝑋𝑡 . Chang, Christoffersen, and Jacobs (2013) indicate that taking the first 

difference is appropriate for VIX, whereas an ARMA(1,1) model is need to remove 

the autocorrelation in the their skewness and kurtosis factors. Following their 

approach, the innovations in market volatility-of-volatility (𝛥𝑉𝑜𝑉) is computed as 

the ARMA(1,1) model residuals of the market volatility-of-volatility.  

4.2. Descriptive statistics 

The daily measure of VoV is plotted in Figure 1. There are clear spikes on the 

graph—the Asian financial crisis in1997, the LTCM crisis in1998, September11, 2001, 

                                                      
15

 Specifically, for stock i, we run the regression: 𝑅𝑉𝑖,𝑡+1 = 𝛼 + 𝛽0𝐼𝑉𝑖,𝑡 + 𝛽1𝑅𝑉𝑖,𝑡 and defined the 

fitted value as 𝐸𝑅𝑉𝑖,𝑡, i.e. 𝐸𝑅𝑉𝑖,𝑡 ≡ 𝑅𝑉̂𝑖,𝑡+1 = 𝛼̂ + 𝛽̂0𝐼𝑉𝑖,𝑡 + 𝛽̂1𝑅𝑉𝑖,𝑡. 
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the WorldCom and Enron bankruptcies in 2001 and 2002, subprime loan crisis in 

2007, the recent financial crisis in 2008, and the flash crash in 2010.   

Table 1 reports descriptive statistics for the daily factors used in this paper. In our 

sample, the mean of 30-day market variance risk premium (VRP) is 17.260 (in 

percentages squared), which is slightly smaller than 18.3 in Bollerslev, Tauchen, and 

Zhou’s (2010) sample. The mean of VoV is 0.054%, which is much smaller than its 

standard deviation, 0.563%. The mean of SKEW is -1.663 and the mean of KURT is 

9.313. Thus, the risk-neutral distribution of the market return is asymmetric and has 

fat tails.  

Panel B reports the Spearman correlations between factors, including the excess 

market return (MKT), the Fama and French (1993) SMB and HML factors, the 

momentum factor (UMD), the changes in VIX (ΔVIX; Ang, Hodrick, Xing, and Zhang, 

2006), innovations in VoV (ΔVoV), and Chang, Christoffersen, and Jacobs (2013) 

innovations in market skewness factor (ΔSKEW) and market kurtosis factor (ΔKURT). 

As expected, MKT is negatively correlated with both ΔVIX (-0.779) and ΔVoV 

(-0.044), supporting the leverage effect predicted by our model. Moreover, VRP is 

positively correlated with ΔVoV (0.145), consistent with our theory that the variance 

risk premium and the market volatility-of-volatility are both driven by the economic 

volatility-of-volatility. ΔKURT and ΔSKEW are highly correlated with a correlation 

value of -0.863, which is comparable to -0.83 reported by Chang, Christoffersen, and 

Jacobs (2013). ΔVoV shows little correlation with ΔVIX (0.049), ΔSKEW (-0.017), and 

ΔKURT (-0.010), which suggests that ΔVoV should be an independent state variable 

that cannot be explained by these market moments studied in the literature.  

5. Pricing volatility-of-volatility risk in the cross-sectional stock returns 

This section examines how market volatility-of-volatility risk affects 

cross-sectional average returns. Based on our market-based three-factor model with 
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their empirical proxies, at the end of each month, we estimate the regression for each 

stock i using daily returns:  

 
𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1

+ 𝛽𝑖,𝑉𝑜𝑉𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑖,𝑡+1. 
(33) 

We construct a set of testing assets that are sufficiently disperse in exposure to 

aggregate volatility-of-volatility innovations by sorting firms on 𝛽𝑖,𝑉𝑜𝑉 loadings over 

the past month using the regression (33) with daily data. Our empirical model is an 

extension of Ang, Hodrick, Xing, and Zhang (2006). Following their work, we run the 

regression for all common stocks on NYSE, AMEX, and NASDAQ with more than 

17 daily observations. After the portfolio formation, we calculate the value-weighted 

daily and monthly stock returns for each portfolio. If market volatility-of-volatility is 

a priced risk factor, we should expect to see a monotonic decreasing pattern in the 

portfolio returns. 

5.1. Portfolios sorted on market volatility-of-volatility risk 

Table 2 provides the performance of portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉. Stocks are 

sorted into quintile portfolios based on 𝛽𝑖,𝑉𝑜𝑉, from the lowest (quintile 1) to the 

highest (quintile 5). Consistent with the model, we find that stocks with positive 

return sensitivities to market volatility-of-volatility (quintile 5) have lower stock 

returns than stocks with negative return sensitivities (quintile 1) by 0.88 percent per 

month with t- statistic of -2.32. Controlling for Fama and French four factor model, 

the ‘5-1’ long-short portfolio still gives a significant alpha of -0.96 percent per month 

with a t-statistic of -2.59. 

To check whether our results are robust to firm characteristics, Table 3 shows 

performance of portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉, controlling for market capitalization (Size), 

book-to-market ratio (B/M), past 11-month returns (RET_2_12), and Amihud’s 

illiquidity (ILLIQ), respectively. We first sort stocks into five quintiles based Size. 
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Then, within each quintile, we sort stocks based on their 𝛽𝑖,𝑉𝑜𝑉 loadings into five 

portfolios. All portfolios are rebalanced monthly and are value weighted. The five 

portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉  are then averaged over each of the five Size sorted 

portfolios, resulting 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios controlling for Size. B/M, RET_2_12, 

and ILLIQ are analyzed with the same procedure as described above. The Fama and 

French four factor alpha of the ‘5-1’ long–short portfolio remains significant 

controlling for these four variables, i.e. at -0.45 percent with a t-statistic of -2.14 

controlling for Size, at -0.88 percent with a t-statistic of -3.15 controlling for B/M, at 

-0.52 percent with a t-statistic of -2.12 controlling for RET_2_12, and at -0.53 percent 

with a t-statistic of -2.30 controlling for ILLIQ. Hence, the low returns to high 𝛽𝑖,𝑉𝑜𝑉 

stocks are not completely driven by the existing well-known firm characteristics.  

5.2. Portfolios sorted on market volatility risk 

Table 4 provides the performance of portfolios sorted on 𝛽𝑖,𝑉𝐼𝑋, using the same 

approach as on 𝛽𝑖,𝑉𝑜𝑉. We find evidence consistent with Ang, Hodrick, Xing, and 

Zhang’s (2006) findings that there is a significant difference of -0.87 percent per 

month with a t-statistic of -2.17 between the stock returns with high volatility risk and 

the stocks with low volatility risk. Controlling for Fama and French four factor model, 

the ‘5-1’ long-short portfolio gives a significant alpha of -1.18 percent per month with 

a t-statistic of -3.24. 

Table 5 considers two-way sorted portfolios on 𝛽𝑖,𝑉𝐼𝑋  and 𝛽𝑖,𝑉𝑜𝑉 . We sort 

stocks into quintile portfolios based on 𝛽𝑖,𝑉𝐼𝑋, from the lowest (quintile 1) to the 

highest (quintile 5), and independently sort stocks into quintile portfolios based on 

𝛽𝑖,𝑉𝑜𝑉. The five portfolios sorted on 𝛽𝑖,𝑉𝐼𝑋 are then averaged over each of the five 

𝛽𝑖,𝑉𝑜𝑉 portfolios, resulting 𝛽𝑖,𝑉𝐼𝑋 quintile portfolios controlling for 𝛽𝑖,𝑉𝑜𝑉. Similar 

approach gives 𝛽𝑖,𝑉𝑜𝑉  quintile portfolios controlling for 𝛽𝑖,𝑉𝐼𝑋 . Controlling for 
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volatility risk loadings (𝛽𝑖,𝑉𝐼𝑋), we still find market volatility-of-volatility risk carries 

a statistically significant return differential of -0.97 percent per month with a 

t-statistic of -2.84. On the other hand, controlling for market volatility-of-volatility 

risk loadings (𝛽𝑖,𝑉𝑜𝑉), we find that the return difference between stocks with high 

volatility risk and stocks with low volatility risk is still large in magnitude, at -0.68 

percent per month with t-value of -1.94. Thus, the valuation effect of market 

volatility-of-volatility risk is not affected after controlling for 𝛽𝑖,𝑉𝐼𝑋, suggesting that 

the market volatility-of-volatility risk is a pricing factor independent with the 

aggregate volatility factor. 

5.3. Portfolios sorted on market skewness risk 

At the end of each month, we estimate the model of Chang, Christoffersen, and 

Jacobs (2013) with ex ante higher moments of market returns for each stock i:  

 
𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1

+ 𝛽𝑖,𝑆𝐾𝐸𝑊𝛥𝑆𝐾𝐸𝑊𝑡+1 + 𝛽𝑖,𝐾𝑈𝑅𝑇𝛥𝐾𝑈𝑅𝑇𝑡+1 + 𝜀𝑖,𝑡+1. 
(34) 

We sort stocks into quintile portfolios based on 𝛽𝑖,𝑆𝐾𝐸𝑊, from the lowest (quintile 1) 

to the highest (quintile 5), and we also independently sort stocks into quintile 

portfolios based on 𝛽𝑖,𝑉𝑜𝑉.  

Panel A of Table 6 provides the performance of portfolios sorted on 𝛽𝑖,𝑆𝐾𝐸𝑊. We 

find that there is a significant difference of -0.65 percent per month with a t-statistic 

of -1.99 between the stock returns with high skewness risk and the stocks with low 

skewness risk. Controlling for Fama and French four factor model, the ‘5-1’ 

long-short portfolio gives a significant alpha of -0.75 percent per month with a 

t-statistic of -2.28.  

Panel B shows the results for the 𝛽𝑖,𝑆𝐾𝐸𝑊 quintile portfolios controlling for 

𝛽𝑖,𝑉𝑜𝑉 quintile portfolios. Controlling for market volatility-of-volatility risk loadings 

(𝛽𝑖,𝑉𝑜𝑉), we find the market skewness risk premium is much weaker, carrying a 
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statistically insignificant return differential of -0.33 percent per month with a 

t-statistic of -1.17. On the other hand, as reported in Panel C, controlling for market 

skewness risk loadings (𝛽𝑖,𝑉𝑜𝑉), we find that the ‘5-1’ long-short portfolio still gives a 

significant return differential of -0.82 percent per month with a t-statistic of -2.38. In 

summary, the market skewness risk is less likely to explain the market 

volatility-of-volatility risk, whereas part of the skewness return differential can be 

explained by the market volatility-of-volatility risk. 

5.4. Price of market volatility-of-volatility risk  

We apply the two-pass regressions of Fama-MacBeth (1973) to estimate the price 

of market volatility-of-volatility risk. Our set of test assets are the 25 portfolios 

formed on intersection of 𝛽𝑖,𝑉𝐼𝑋 quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios. 

For each portfolio, we estimate the time-series regression of equation (33) using the 

post-formation daily value-weighted portfolio returns to obtain the post-formation 

factor loadings. We then conduct the cross-sectional regression: 

  𝔼[𝑟𝑝] − 𝑟𝑓 = 𝜆𝑀𝐾𝑇𝛽𝑝,𝑀𝐾𝑇 + 𝜆𝑉𝐼𝑋𝛽𝑝,𝑉𝐼𝑋 + 𝜆𝑉𝑜𝑉𝛽𝑝,𝑉𝑜𝑉. (35) 

The dependent variable is the monthly value-weighted portfolio return and the 

independent variables are the post-ranking return betas estimated from equation (33) 

using full-sample daily portfolio returns. Robust Newey and West (1987) t-statistics 

with six lags that account for autocorrelations are used. The cross-sectional regression 

gives the estimates of risk prices, i.e. 𝜆𝑀𝐾𝑇, 𝜆𝑉𝐼𝑋, and 𝜆𝑉𝑜𝑉. 

Panel A of Table 7 reports the estimate of risk prices from the 25 portfolios 

sorted on 𝛽𝑖,𝑉𝐼𝑋 and 𝛽𝑖,𝑉𝑜𝑉. In column [2], we find that 𝜆𝑉𝑜𝑉 is negative (-4.11) 

with a significant t-statistic of -3.27. Controlling for the market volatility risk, as 

reported in column [3], 𝜆𝑉𝑜𝑉 is still significantly negative (-3.66) with a t-statistic of 

-2.35, which accounts for -3.66×0.21= -0.77 percent per month of the ‘5-1’ return in 
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Table 2. Controlling for all of the other factors, as shown in column [6], 𝜆𝑉𝑜𝑉 

remains significantly negative (-3.62) with a t-statistic of -2.68, which accounts for 

-3.62×0.21= -0.76 percent. In contrast, 𝜆𝑉𝐼𝑋 is only significant in column [1], with 

t-value of -3.29. Thus, our empirical findings suggest that market 

volatility-of-volatility indeed is an independently priced risk factor relative to 

aggregate volatility factor.  

 In Panel B, we the estimate of risk prices from the 25 portfolios sorted on 

intersection of 𝛽𝑖,𝑆𝐾𝐸𝑊  quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉  quintile portfolios. 

Consequently, the testing assets are sufficiently disperse in the exposure to aggregate 

volatility-of-volatility as well as in the exposure to aggregate skewness. In column [2], 

we find that 𝜆𝑉𝑜𝑉 is negative (-2.07) with a significant t-statistic of -1.77. As shown 

in column [6], 𝜆𝑉𝑜𝑉  is significantly negative (-1.86) with a t-statistic of -1.75, 

whereas 𝜆𝑆𝐾𝐸𝑊 is positive (2.76) with insignificant t-statistic of 1.36. Therefore, 

relative to the market skewness factor, the variance of market variance remains a 

priced risk factor.  

5.5. Leverage effect, feedback effect and volatility-of-volatility risk premium  

To further explore the mechanism that volatility-of-volatility risk affects asset 

prices, we investigate whether the volatility-of-volatility risk contributes to the 

feedback effect. To identify the timely volatility-of-volatility shocks, at the end of 

each day, we estimate the regression of equation (33) using daily stock returns over 

the past 22 days. We then sort stocks into quintile portfolios on the estimated 𝛽𝑖,𝑉𝑜𝑉 

for each day and calculate the event-time daily value-weighted portfolio returns 

ranging from -11 to 11 in days.  

If market volatility-of-volatility is priced, an anticipated increase in market 

volatility-of-volatility raises the required rate of return, implying an immediate stock 

price decline and higher future returns. As shown in Figure 2, consistent with the 
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channel of feedback effect, stocks with negative return sensitivities to market 

volatility-of-volatility have lower returns before the portfolio formation and earn 

higher post-formation returns than stocks with positive return sensitivities. 

We construct a portfolio that is long the lowest quintile and short the highest 

quintile and we denote the portfolio as low-minus-high. The low-minus-high portfolio 

has, by construction, large negative exposure to innovations in market 

volatility-of-volatility. The theory of the leverage effect and the feedback effect 

predict an asymmetric cross-correlation between the aggregate volatility and the 

pre-formation and the post-formation low-minus-high returns.  

As can be seen in the top panel of Figure 3, the pre-formation low-minus-high 

returns are negatively correlated with VIX measured at the portfolio formation date 

while the correlations between VIX and the post-formation low-minus-high returns are 

positive, supporting the leverage effect and the feedback effect associated with the 

aggregate volatility.  

Moreover, our theory for the leverage effect and the feedback effect similarly 

predicts an asymmetric cross-correlation between market volatility-of-volatility and 

the pre-formation and the post-formation low-minus-high returns. As can be seen in 

the bottom panel of Figure 3, the low-minus-high return is negatively correlated with 

VoV at the portfolio formation date while the correlation between VoV and one-day 

post-formation low-minus-high return is positive. The market volatility-of-volatility 

carries a negative contemporaneous correlation of -0.232, which is much larger in 

magnitude than -0.057 for the contemporaneous leverage effect associated with 

market volatility. The correlation between one-day post-formation low-minus-high 

return and market volatility-of-volatility is 0.100, which is larger than 0.060 for the 

correlation between the return and the market volatility. The stronger asymmetric 

cross-correlation, despite less persistent, supports the leverage effect and the feedback 
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effect associated with market volatility-of-volatility. Therefore, market 

volatility-of-volatility seems to be the state variable that determines the time-varying 

risk premium.  

5.6. Robustness to volatility spreads 

In this section, we check whether our results are robust to existing well-known 

volatility spreads that affect cross-sectional stock returns. We construct the 

implied-realized volatility spread (IVOL-TVOL), which is, as described in Bali and 

Hovakimian (2009), defined as the average of implied volatilities by at-the-money 

call and put minus the total volatility calculated using daily returns in the previous 

month; the call-put implied volatility spread (CIVOL-PIVOL), which is, as described 

in Bali and Hovakimian (2009) and Yan (2011), defined as the at-the-money call 

implied volatility minus the at-the-money put implied volatility; the expected 

individual variance risk premium (EVRP), which is, as described in the data section 

and in Han and Zhou (2012), defined as the difference between the model-free 

implied variance and the five-minute realized variance. Since we extract the volatility 

data from OptionMetrics Volatility Surface file as Yan (2011) do, we choose the 

30-day maturity put and call options with deltas equal to -0.5 and 0.5, respectively.  

Panel A of Table 8 shows the performance of portfolios sorted on each of the 

volatility spreads as well as on 𝛽𝑖,𝑉𝑜𝑉 using stocks with available equity options. The 

Fama and French four factor alpha of the ‘5-1’ long–short portfolio is 0.63 percent 

with a t-statistic of 1.76 for IVOL-TVOL quintile portfolios, 1.66 percent with a 

t-statistic of 6.70 for CIVOL-PIVOL quintile portfolios, 0.96 percent with a t-statistic 

of -2.21 for EVRP quintile portfolios, and -0.85 percent with a t-statistic of -2.38 for 

𝛽𝑖,𝑉𝑜𝑉 quintile portfolios. Hence, our results for market volatility-of-volatility risk 

remain significant in the options market and consistent with the literature, all of the 

three volatility variables carry significant premium in the cross-section.  
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We construct two-way sorted portfolios formed on intersection of each of the 

volatility spread quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios. Panel B shows the 

results for the 𝛽𝑖,𝑉𝑜𝑉  quintile portfolios controlling for volatility spread quintile 

portfolios. The Fama and French four factor alpha of the ‘5-1’ long–short portfolio 

remains significant controlling for these three variables, i.e. at -0.76 percent with a 

t-statistic of -2.38 controlling for IVOL-TVOL, at -0.74 percent with a t-statistic of 

-2.29 controlling for CIVOL-PIVOL, and at -0.66 percent with a t-statistic of -2.20 

controlling for EVRP. Hence, the low returns to high 𝛽𝑖,𝑉𝑜𝑉 stocks are not driven by 

the existing well-known volatility spreads.  

 As shown by Yan (2011), CIVOL-PIVOL is proxy for a disaster type jump risk 

that affects the cross-sectional stock returns. Our empirical finding that the pricing of 

𝛽𝑖,𝑉𝑜𝑉  is robust to CIVOL-PIVOL provides indirect evidence that the market 

volatility-of-volatility risk cannot be completely explained by a peso-problem like 

jump risk.  

5.7. Robustness to firm-level Fama-MacBeth regressions 

In this section, we examine whether the pricing of market volatility-of-volatility 

risk is robust to the firm-level analysis. We employ individual stocks as the set of test 

assets to avoid potentially spurious results that could arise when the test portfolios are 

constructed toward a specific model (Lewellen, Nagel, and Shanken, 2010). 

Furthermore, a stock-level analysis could increase the power of the test by controlling 

for several individual characteristics at the same time.  

We test our market-based three factor model at firm-level with the following 

cross-sectional regression: 

 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝑐0 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇,𝑡 + 𝜆𝑉𝐼𝑋𝛽𝑖,𝑉𝐼𝑋,𝑡 + 𝜆𝑉𝑜𝑉𝛽𝑖,𝑉𝑜𝑉,𝑡

+ 𝑐𝐹𝐼𝑅𝑀 𝐹𝑖𝑟𝑚𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡 + 𝑐𝑉𝑂𝐿 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡 + 𝜀𝑖,𝑡+1, 
(36) 
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where the dependent variable is the monthly individual stock returns; 𝛽𝑖,𝑀𝐾𝑇,𝑡 , 

𝛽𝑖,𝑉𝐼𝑋,𝑡, and 𝛽𝑖,𝑉𝑜𝑉,𝑡 are post-ranking betas estimated from the same 25 portfolios in 

section 5.4 formed on intersection of 𝛽𝑖,𝑉𝐼𝑋 quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile 

portfolios; 𝐹𝑖𝑟𝑚𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡  consists of Size, B/M, RET_2_12, and ILLIQ; and 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡  includes IVOL-TVOL, CIVOL-PIVOL, and EVRP. Robust 

Newey and West (1987) t-statistics with six lags that account for autocorrelations are 

used. Following the methodology of Fama and French (1992), we assign each of the 

25 portfolio-level post-ranking beta estimates to the individual stocks within the 

portfolio at that time. Thus, individual stock betas vary over time because the 

portfolio compositions change each month.  

Table 9 reports the results from the firm-level Fama-MacBeth regressions. In 

column [2], we find that 𝜆𝑉𝑜𝑉 is negative (-3.07) with a significant t-statistic of -4.07. 

Controlling for the market volatility risk, as reported in column [3], 𝜆𝑉𝑜𝑉 is still 

significantly negative (-3.07) with a t-statistic of -4.17, which accounts for 

-3.07×0.21= -0.65 percent per month of the ‘5-1’ return in Table 2. Controlling for all 

of the other variables, as shown in column [6], 𝜆𝑉𝑜𝑉 remains significantly negative 

(-3.12) with a t-statistic of -2.57, which accounts for -3.62×0.21= -0.66 percent. Thus, 

the firm-level evidence confirms our results that the market volatility-of-volatility is a 

priced risk factor in the cross-sectional stock returns.   

6. Pricing market volatility-of-volatility in the cross-sectional variance risk 

premium 

The second test in this paper is to examine whether market volatility-of-volatility 

is priced in the cross-sectional variance risk premium. For each stock with available 

equity options in each day, we calculate the 30-day model-free implied variance 

(𝐼𝑉𝑖,𝑡+1). Then, at the end of each month, we estimate the variance beta with respect to 



33 
 

market volatility-of-volatility (𝛽𝑖,𝑉𝑜𝑉
𝑉 ) for each stock by regressing the stock’s 𝐼𝑉𝑖,𝑡+1 

on 𝑉𝑜𝑉𝑡+1 over the past month. We use 𝛽𝑖,𝑉𝑜𝑉
𝑉  to construct a set of test portfolios. 

Our theory suggests that the cross-sectional expected variance risk premium is 

determined by: 

 𝐸𝑉𝑅𝑃𝑝 ≡ 𝐼𝑉𝑝 − 𝐸𝑅𝑉𝑝 = −𝜆𝑉𝐼𝑋
𝑉 𝛽𝑝,𝑉𝐼𝑋

𝑉 − 𝜆𝑉𝑜𝑉
𝑉 𝛽𝑝,𝑉𝑜𝑉

𝑉 . (37) 

We estimate 𝛽𝑝,𝑉𝐼𝑋
𝑉  and 𝛽𝑝,𝑉𝑜𝑉

𝑉  by the following time-series regression: 

 𝐼𝑉𝑝,𝑡+1 = 𝛼𝑝
𝑉 + 𝛽𝑝,𝑉𝐼𝑋

𝑉 Δ𝑉𝐼𝑋̃𝑡+1
2 + 𝛽𝑝,𝑉𝑜𝑉

𝑉 Δ𝑉𝑜𝑉𝑡+1 + 𝜀𝑝,𝑡+1
𝑉 , (38) 

where 𝐼𝑉𝑝,𝑡+1  is the post-formation portfolio implied variance; Δ𝑉𝐼𝑋̃𝑡+1
2  as the 

innovations in market variance, which is measured as the ARMA(1,1) model residuals 

of squared VIX divided by 12, orthogonalized by 𝛥𝑉𝑜𝑉𝑡+1 . While we define 

𝛥𝑉𝐼𝑋𝑡+1 = 𝑉𝐼𝑋𝑡+1 − 𝑉𝐼𝑋𝑡 for the stock return beta as in Ang, Hodrick, Xing, and 

Zhang (2006) for the compatibility, our variance beta is estimated by Δ𝑉𝐼𝑋̃𝑡+1
2  for 

the model consistency. 

Table 10 provides the performance of portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉
𝑉 . Stocks are 

sorted into quintile portfolios based on 𝛽𝑖,𝑉𝑜𝑉
𝑉 , from the lowest (quintile 1) to the 

highest (quintile 5). After the portfolio formation, we calculate monthly 

value-weighted expected variance risk premium and daily value-weighted model-free 

implied variance for each portfolio. Consistent with the model, we find that stocks 

with high variance sensitivities to market volatility-of-volatility (quintile 5) have 

higher expected variance risk premium than stocks with low variance sensitivities 

(quintile 1) by 67.7 (in percentages squared) per month with t- statistic of -5.15. The 

magnitude of the cross-sectional difference in variance risk premium is large 

compared to the market variance risk premium, which is 17.3 (in percentages squared) 

per month during our sample period. Panel B reports the performance of portfolios 

sorted on 𝛽𝑖,𝑉𝐼𝑋
𝑉 . The results are very similar to the portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉

𝑉 . In fact, 
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we find that the cross-sectional Spearman correlation between 𝛽𝑖,𝑉𝑜𝑉
𝑉  and 𝛽𝑖,𝑉𝐼𝑋

𝑉  is 

0.99, which is also part of the reason why we use the orthogonalized innovations in 

market variance as risk factor for individual variance.  

We estimate the price of risks in cross-sectional EVRP using the 25 portfolios 

sorted on 𝛽𝑖,𝑉𝑜𝑉
𝑉 . We apply the two-pass regressions of Fama-MacBeth (1973) to 

estimate the price of market volatility-of-volatility risk in EVRP. After the portfolio 

formation, we calculate monthly value-weighted expected variance risk premium, 

daily value-weighted model-free implied variance, and daily value-weighted stock 

returns for each portfolio. In the first stage, for each portfolio, we estimate the 

post-ranking variance betas by equation (38) using daily portfolio implied variance. 

For the second stage, we regress the cross-sectional monthly portfolio EVRP on 

variance betas obtained from the first stage, using Fama–MacBeth (1973) 

cross-sectional regression by equation (37).  

Table 11 reports the estimate of risk prices in EVRP from the 25 portfolios sorted 

on 𝛽𝑖,𝑉𝑜𝑉
𝑉 . In column [2], we find that −𝜆𝑉𝑜𝑉

𝑉  is positive (5.99) with a significant 

t-statistic of 5.32. Controlling for the market volatility risk (𝛽𝑝,𝑉𝐼𝑋
𝑉 ), as reported in 

column [3], −𝜆𝑉𝑜𝑉
𝑉  is still significantly positive (5.20) with a t-statistic of 4.04, 

which accounts for 5.20×8.32= 43.3 (in percentages squared) per month of the ‘5-1’ 

EVRP in Table 10. Controlling for all of the other factors, as shown in column [6], 

−𝜆𝑉𝑜𝑉
𝑉  remains significantly positive (1.53) with a t-statistic of 2.27, which accounts 

for 1.53×8.32= 12.7 (in percentages squared). Thus, our empirical findings suggest 

that market volatility-of-volatility is priced risk factor in the cross-sectional variance 

risk premium. 

7. Return predictability 

In this section, we check the return predictability afforded by market 

volatility-of-volatility. The theoretical model suggests that market 
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volatility-of-volatility is positively related to economic volatility-of-volatility. Hence, 

we should expect that our VoV measure can predict future stock returns as market 

variance risk premium does.  

Panel A of Table 12 reports the estimates of the one-period return predictability 

regression using daily S&P 500 logarithmic returns multiplied by 22 on the lagged 

variance risk premium (VRP), market volatility-of-volatility (VoV), and innovations in 

market skewness (ΔSKEW). Robust Newey and West (1987) t-statistics with sixteen 

lags that account for autocorrelations are used. Consistent with the theory, we find 

that VoV positively predicts one-period ahead market return in all of the specifications. 

In panel B, we use the monthly S&P 500 logarithmic returns as the dependent variable, 

and the independent variables are sampled at the end of the previous month. Robust 

Newey and West (1987) t-statistics with six lags are used. The predictability afforded 

by VoV remains significant.  

Overall, the return predictability supports the volatility-of-volatility feedback 

effect implied by our model. The evidence for the predictability afforded by the 

market volatility-of-volatility suggests that economic volatility-of-volatility is an 

important state variable that affects the aggregate asset prices.  

8. Conclusions 

Market volatility-of-volatility appears to be a state variable that is important for 

asset pricing. We develop a market-based three-factor model, in which market risk, 

market volatility risk, and market volatility-of-volatility risk determine the 

cross-sectional asset prices. We find that market volatility-of-volatility risk is priced 

in the cross-sectional stock returns. Stocks with negative larger return exposure to 

market volatility-of-volatility have substantially higher future stock returns, even after 

we account for exposures to the Fama and French four factors, market skewness 
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factor, firm characteristics and volatility characteristics. We also find that market 

volatility-of-volatility risk is priced in the cross-sectional variance risk premium. 

Our measure of market volatility-of-volatility generates leverage effect and 

feedback effect. Stocks with negative larger return exposure to market 

volatility-of-volatility have substantially lower contemporaneous stock returns, which 

suggests that market volatility-of-volatility is priced such that an anticipated increase 

in market volatility-of-volatility risk raises the required rate of return, leading to an 

immediate stock price decline and higher future returns. Our evidence on return 

predictability for the aggregate market portfolio supports feedback effect implied by 

our model. The predictability evidence afforded by the market volatility-of-volatility 

also suggests that economic volatility-of-volatility is an important state variable. 

Our study shows that market volatility-of-volatility risk affects the 

cross-sectional expected variance risk premium. One direction for future research is to 

explore whether market volatility-of-volatility risk plays a role in tradable 

volatility-related assets such as equity option returns or index option returns. Future 

research could also investigate whether our measure of market volatility-of-volatility 

affects the VIX option returns.  
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Table 1 Properties of the daily factors. 

We report summary statistics and Spearman correlations for the daily factors, including Fama and 

French (1993) four factors (MKT, SMB, HML, and UMD), the market variance risk premium (VRP),  

the VIX index, our measure of variance of market variance (VoV), and Chang, Christoffersen, and 

Jacobs (2013) market skewness factor (SKEW) and market kurtosis factor (KURT). ΔVIX is the first 

difference of VIX. ΔVoV, ΔSKEW, and ΔKURT are the residuals from fitting an ARMA(1,1) regression 

using VoV, SKEW, and KURT, respectively. The sample period is from January 1996 to December 

2010. 

 

 Panel A: Summary statistics 

 MKT(%) SMB(%) HML(%) UMD(%) VRP(%) VIX(%) VoV(%) SKEW KURT 

Mean 0.023  0.010  0.016  0.024  17.260  23.098  0.054  -1.663  9.313  

Median 0.070  0.030  0.020  0.070  15.082  22.150  0.003  -1.637  8.672  

Std.Dev. 1.300  0.629  0.682  1.035  21.182  9.509  0.563  0.485  3.466  

          

 Panel B: Spearman correlation 

 MKT SMB HML UMD VRP ΔVIX ΔVoV ΔSKEW ΔKURT 

MKT 1.000          

SMB 0.038  1.000         

HML -0.279  -0.082  1.000        

UMD -0.047  0.053  -0.078  1.000       

VRP -0.222  -0.050  0.006  0.062  1.000      

ΔVIX -0.779  0.031  0.210  0.020  0.180  1.000     

ΔVoV -0.044  -0.003  -0.038  0.036  0.145  0.049  1.000    

ΔSKEW -0.237  -0.022  0.026  0.034  0.076  0.248  -0.017  1.000   

ΔKURT 0.311  0.014  -0.057  -0.017  -0.106  -0.307  -0.010  -0.863  1.000  
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Table 2 Portfolios sorted on 𝜷𝒊,𝑽𝒐𝑽. 

At the end of each month, we run the following regression for each stock using daily returns: 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1 + 𝛽𝑖,𝑉𝑜𝑉𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑖,𝑡+1. 

We sort stocks into quintile portfolios based on 𝛽𝑖,𝑉𝑜𝑉, from the lowest (quintile 1) to the highest 

(quintile 5). After the portfolio formation, we calculate the value-weighted daily and monthly stock 

returns for each portfolio. The column “5-1” refers to the hedge portfolio that longs portfolio 5 and 

shorts portfolio 1. For each portfolio, we estimate the same time-series regression as above using the 

post-formation daily portfolio returns to obtain the post-formation factor loadings. We compute the 

risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and 

UMD) from the intercept estimate of a time-series regression of the monthly portfolio returns on the 

four factors. Numbers in parentheses are t-statistics. Size reports the average market capitalization (in 

billion) for firms within the portfolio; B/M reports the average book-to-market ratios; RET_2_12 

reports the average of past 11-month returns prior to last month; ILLIQ reports the average of Amihud’s 

(2002) illiquidity measure. The sample period is from January 1996 to December 2010. 

 

 Portfolios ranking 
 

 1 2 3 4 5 5-1 

Risk-adjusted performance of 𝛽𝑖,𝑉𝑜𝑉  sorted portfolios (monthly return)  

Excess return 0.90  0.64  0.40  0.34  0.02  -0.88  

 ( 1.61) ( 1.70) ( 1.20) ( 0.92) ( 0.04) (-2.32) 

α-CAPM 0.34  0.23  0.03  -0.07  -0.54  -0.89  

 
( 1.21) ( 2.01) ( 0.33) (-0.57) (-2.54) (-2.32) 

α-FF3 0.28  0.21  0.02  -0.07  -0.54  -0.82  

 
( 1.13) ( 1.89) ( 0.25) (-0.67) (-2.59) (-2.18) 

α-FF4 0.44  0.22  0.01  -0.08  -0.53  -0.96  

 
( 1.88) ( 1.99) ( 0.05) (-0.74) (-2.50) (-2.59) 

Post-formation factor loadings (daily return) 

𝛽𝑝,𝑀𝐾𝑇  1.35  1.00  0.90  0.96  1.32  -0.02  

( 78.37) ( 125.34) ( 145.90) ( 127.57) ( 79.40) (-0.91) 

𝛽𝑝,𝑉𝐼𝑋  0.06  -0.01  -0.02  -0.01  0.06  -0.01  

( 5.34) (-1.42) (-4.70) (-2.48) ( 4.86) (-0.41) 

𝛽𝑝,𝑉𝑜𝑉  -0.04  -0.03  0.01  0.02  0.16  0.21  

(-1.93) (-3.00) ( 1.47) ( 2.27) ( 7.35) ( 5.95) 

Pre-formation characteristics 

Size($b) 1.03  2.87  3.49  3.24  1.33  0.30  

B/M 1.19  0.88  0.84  0.83  1.10  -0.09  

RET_2_12 12.31  14.96  15.11  14.37  11.76  -0.56  

ILLIQ(106) 9.04  3.06  2.47  3.05  8.87  -0.17  

Pre-formation factor loadings 

𝛽𝑖,𝑀𝐾𝑇  1.23  0.97  0.91  0.99  1.28  0.05  

𝛽𝑖,𝑉𝐼𝑋  0.06  0.00  -0.01  -0.01  0.01  -0.05  

𝛽𝑖,𝑉𝑜𝑉(102) -6.23  -2.18  -0.15  1.86  5.69  11.92  
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Table 3 Portfolios sorted on 𝜷𝒊,𝑽𝒐𝑽, controlling for Size, B/M, momentum, and illiquidity. 

This table shows performance of portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉, controlling for market capitalization (Size), 

book-to-market ratio (B/M), past 11-month returns (RET_2_12), and Amihud’s illiquidity (ILLIQ), 

respectively. We first sort stocks into five quintiles based on their market capitalization (Size). Then, 

within each quintile, we sort stocks based on their 𝛽𝑖,𝑉𝑜𝑉  loadings into five portfolios. All portfolios 

are rebalanced monthly and are value weighted. The five portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉 are then averaged 

over each of the five Size portfolios, resulting 𝛽𝑖,𝑉𝑜𝑉  quintile portfolios controlling for Size. We 

compute the risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, 

SMB, HML, and UMD). B/M, RET_2_12, and ILLIQ are analyzed with the same procedure as 

described above. Numbers in parentheses are t-statistics. 

 

 Portfolios ranking on 𝛽𝑖,𝑉𝑜𝑉  α-FF4 

 1 2 3 4 5 5-1 5-1 

Controlling for Size 0.81  0.94  0.76  0.75  0.39  -0.42  -0.45  

 ( 1.30) ( 2.12) ( 2.00) ( 1.80) ( 0.70) (-1.93) (-2.14) 

Controlling for B/M 1.10  0.71  0.49  0.47  0.29  -0.81  -0.88  

 ( 2.19) ( 1.95) ( 1.48) ( 1.31) ( 0.59) (-2.81) (-3.15) 

Controlling for RET_2_12 0.53  0.52  0.41  0.29  0.04  -0.49  -0.52  

 ( 1.05) ( 1.21) ( 0.99) ( 0.69) ( 0.07) (-2.01) (-2.12) 

Controlling for ILLIQ 0.79  0.81  0.75  0.67  0.28  -0.51  -0.53  

 ( 1.38) ( 2.09) ( 2.24) ( 1.84) ( 0.56) (-2.18) (-2.30) 
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Table 4 Portfolios sorted on 𝜷𝒊,𝑽𝑰𝑿. 

At the end of each month, we run the following regression for each stock using daily returns: 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1 + 𝛽𝑖,𝑉𝑜𝑉𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑖,𝑡+1. 

We sort stocks into quintile portfolios based on 𝛽𝑖,𝑉𝐼𝑋, from the lowest (quintile 1) to the highest 

(quintile 5). After the portfolio formation, we calculate the value-weighted daily and monthly stock 

returns for each portfolio. The column “5-1” refers to the hedge portfolio that longs portfolio 5 and 

shorts portfolio 1. For each portfolio, we estimate the same time-series regression as above using the 

post-formation daily portfolio returns to obtain the post-formation factor loadings. We compute the 

risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and 

UMD) from the intercept estimate of a time-series regression of the monthly portfolio returns on the 

four factors. Numbers in parentheses are t-statistics. Size reports the average market capitalization (in 

billion) for firms within the portfolio; B/M reports the average book-to-market ratios; RET_2_12 

reports the average of past 11 month returns prior to last month; ILLIQ reports the average of Amihud’s 

(2002) illiquidity measure. The sample period is from January 1996 to December 2010. 

 

 Portfolios ranking 
 

 1 2 3 4 5 5-1 

Risk-adjusted performance of 𝛽𝑖,𝑉𝐼𝑋 sorted portfolios (monthly return)  

Excess return 0.76  0.58  0.37  0.38  -0.11  -0.87  

 ( 1.55) ( 1.69) ( 1.12) ( 0.95) (-0.18) (-2.17) 

α-CAPM 0.25  0.20  0.00  -0.07  -0.72  -0.96  

 ( 1.17) ( 1.99) ( 0.01) (-0.70) (-2.49) (-2.46) 

α-FF3 0.30  0.23  -0.03  -0.11  -0.79  -1.09  

 ( 1.41) ( 2.52) (-0.40) (-1.20) (-3.41) (-2.99) 

α-FF4 0.41  0.25  -0.05  -0.14  -0.77  -1.18  

 
( 2.06) ( 2.77) (-0.60) (-1.52) (-3.27) (-3.24) 

Post-formation factor loadings (daily return) 
 

𝛽𝑝,𝑀𝐾𝑇  1.20  0.91  0.89  1.05  1.47  0.27  

( 82.06) ( 132.82) ( 145.66) ( 141.97) ( 79.37) ( 11.04) 

𝛽𝑝,𝑉𝐼𝑋  0.02  -0.03  -0.03  0.01  0.12  0.10  

( 1.62) (-7.08) (-7.37) ( 1.44) ( 9.25) ( 6.00) 

𝛽𝑝,𝑉𝑜𝑉  0.08  0.00  -0.03  -0.02  0.07  -0.02  

( 4.28) ( 0.29) (-4.19) (-2.35) ( 2.73) (-0.48) 

Pre-formation characteristics 

Size($b) 1.28  3.39  3.63  2.67  0.99  -0.29  

B/M 1.13  0.88  0.82  0.83  1.19  0.07  

RET_2_12 10.88  14.82  15.39  15.02  12.33  1.46  

ILLIQ(106) 9.42  2.76  2.28  2.72  9.31  -0.12  

Pre-formation factor loadings 

𝛽𝑖,𝑀𝐾𝑇  -0.08  0.53  0.95  1.52  2.75  2.83  

𝛽𝑖,𝑉𝐼𝑋  -1.23  -0.40  0.03  0.48  1.40  2.63  

𝛽𝑖,𝑉𝑜𝑉(102) -0.32  -0.17  0.00  0.18  -0.10  0.22  
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Table 5 Two-way sorted portfolios on 𝜷𝒊,𝑽𝑰𝑿 and 𝜷𝒊,𝑽𝒐𝑽. 

At the end of each month, we run the following regression for each stock using daily returns: 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1 + 𝛽𝑖,𝑉𝑜𝑉𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑖,𝑡+1. 

We sort stocks into quintile portfolios based on 𝛽𝑖,𝑉𝐼𝑋, from the lowest (quintile 1) to the highest 

(quintile 5), and independently sort stocks into quintile portfolios based on 𝛽𝑖,𝑉𝑜𝑉. All portfolios are 

rebalanced monthly and are value weighted. The five portfolios sorted on 𝛽𝑖,𝑉𝐼𝑋 are then averaged 

over each of the five 𝛽𝑖,𝑉𝑜𝑉  portfolios, resulting 𝛽𝑖,𝑉𝐼𝑋  quintile portfolios controlling for 𝛽𝑖,𝑉𝑜𝑉 . 

Similar approach gives 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios controlling for 𝛽𝑖,𝑉𝐼𝑋. The column “5-1” refers to the 

hedge portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the same 

time-series regression as above using the post-formation daily portfolio returns to obtain the 

post-formation factor loadings. We compute the risk-adjusted return of each portfolio with respect to 

Fama-French four factors (MKT, SMB, HML, and UMD). Numbers in parentheses are t-statistics. Panel 

A and Panel B present the results for 𝛽𝑖,𝑉𝐼𝑋  quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉  quintile portfolios, 

respectively. In Panel C, we report the monthly value-weighted portfolio excess return for each of the 

25 portfolios. The sample period is from January 1996 to December 2010. 

 

 Portfolios ranking  

 1 2 3 4 5 5-1 

Panel A: Ranking on 𝛽𝑖,𝑉𝐼𝑋, controlling for 𝛽𝑖,𝑉𝑜𝑉  

Excess return 0.66  0.58  0.48  0.40  -0.02  -0.68  

 ( 1.34) ( 1.50) ( 1.30) ( 0.90) (-0.03) (-1.94) 

α-FF4 0.25  0.20  0.03  -0.17  -0.70  -0.95  

 ( 1.38) ( 2.14) ( 0.38) (-1.49) (-3.37) (-2.97) 

Panel B: Ranking on 𝛽𝑖,𝑉𝑜𝑉, controlling for 𝛽𝑖,𝑉𝐼𝑋 

Excess return 0.90  0.65  0.35  0.28  -0.08  -0.97  

 ( 1.57) ( 1.56) ( 0.94) ( 0.70) (-0.14) (-2.84) 

α-FF4 0.39  0.18  -0.09  -0.20  -0.66  -1.05  

 ( 1.82) ( 1.50) (-0.91) (-1.83) (-3.43) (-3.16) 

Panel C: 𝛽𝑖,𝑉𝐼𝑋×𝛽𝑖,𝑉𝑜𝑉 two-way sorted portfolios 

 Ranking on 𝛽𝑖,𝑉𝑜𝑉  

Ranking on 𝛽𝑖,𝑉𝐼𝑋 1 2 3 4 5 5-1 

1 0.71  1.02  0.79  0.62  0.16  -0.56  

 ( 1.12) ( 2.01) ( 1.62) ( 1.23) ( 0.23) (-1.09) 

2 1.06  0.46  0.61  0.46  0.31  -0.75  

 
( 1.86) ( 1.28) ( 1.75) ( 1.21) ( 0.55) (-1.51) 

3 1.32  0.68  0.30  0.30  -0.18  -1.50  

 
( 2.35) ( 1.86) ( 0.90) ( 0.83) (-0.37) (-3.16) 

4 1.10  0.64  0.32  0.29  -0.35  -1.45  

 
( 1.70) ( 1.53) ( 0.81) ( 0.67) (-0.61) (-3.01) 

5 0.30  0.45  -0.29  -0.25  -0.31  -0.61  

 
( 0.42) ( 0.65) (-0.52) (-0.42) (-0.43) (-1.50) 

5-1 -0.41  -0.57  -1.08  -0.87  -0.47  -0.06  

 (-0.83) (-1.11) (-2.18) (-1.77) (-0.95) (-0.10) 
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Table 6 Two-way sorted portfolios on 𝜷𝒊,𝑺𝑲𝑬𝑾 and 𝜷𝒊,𝑽𝒐𝑽 

At the end of each month, we separately run the following regressions for each stock using daily 

returns: 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1 + 𝛽𝑖,𝑆𝐾𝐸𝑊𝛥𝑆𝐾𝐸𝑊𝑡+1

+ 𝛽𝑖,𝐾𝑈𝑅𝑇𝛥𝐾𝑈𝑅𝑇𝑡+1 + 𝜀𝑖,𝑡+1 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡+1 + 𝛽𝑖,𝑉𝐼𝑋𝛥𝑉𝐼𝑋𝑡+1 + 𝛽𝑖,𝑉𝑜𝑉𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑖,𝑡+1. 

We sort stocks into quintile portfolios based on 𝛽𝑖,𝑆𝐾𝐸𝑊, from the lowest (quintile 1) to the highest 

(quintile 5), and independently sort stocks into quintile portfolios based on 𝛽𝑖,𝑉𝑜𝑉. All portfolios are 

rebalanced monthly and are value weighted. The five portfolios sorted on 𝛽𝑖,𝑆𝐾𝐸𝑊 are then averaged 

over each of the five 𝛽𝑖,𝑉𝑜𝑉 portfolios, resulting 𝛽𝑖,𝑆𝐾𝐸𝑊 quintile portfolios controlling for 𝛽𝑖,𝑉𝑜𝑉. 

Similar approach gives 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios controlling for 𝛽𝑖,𝑆𝐾𝐸𝑊 . The column “5-1” refers to 

the hedge portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the 

same time-series regression as above using the post-formation daily portfolio returns to obtain the 

post-formation factor loadings. We compute the risk-adjusted return of each portfolio with respect to 

Fama-French four factors (MKT, SMB, HML, and UMD). Numbers in parentheses are t-statistics. Panel 

A presents the results for the 𝛽𝑖,𝑆𝐾𝐸𝑊 quintile portfolios. Panel B shows the results for the 𝛽𝑖,𝑆𝐾𝐸𝑊  

quintile portfolios controlling for 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios while Panel C shows the results for the 

𝛽𝑖,𝑉𝑜𝑉 quintile portfolios controlling for 𝛽𝑖,𝑆𝐾𝐸𝑊  quintile portfolios. In Panel D, we report the monthly 

value-weighted portfolio excess return for each of the 25 portfolios. The sample period is from January 

1996 to December 2010. 

 

 Portfolios ranking  

 1 2 3 4 5 5-1 

Panel A: Ranking on 𝛽𝑖,𝑆𝐾𝐸 � 

Excess return 0.88  0.43  0.40  0.37  0.23  -0.65  

 ( 1.67) ( 1.14) ( 1.21) ( 1.00) ( 0.43)  (-1.99) 

α-FF4 0.41  0.04  0.02  -0.08  -0.34  -0.75  

 ( 1.98) ( 0.35) ( 0.23)  (-0.77)  (-1.70)  (-2.28) 

Panel B: Ranking on 𝛽𝑖,𝑆𝐾𝐸𝑊, controlling for 𝛽𝑖,𝑉𝑜𝑉 

Excess return 0.66  0.52  0.35  0.55  0.33  -0.33  

 ( 1.23) ( 1.22) ( 0.94) ( 1.32) ( 0.62)  (-1.17) 

α-FF4 0.18  0.05  -0.11  0.08  -0.27  -0.45  

 ( 0.93) ( 0.50)  (-1.30) ( 0.74)  (-1.51)  (-1.59) 

Panel C: Ranking on 𝛽𝑖,𝑉𝑜𝑉 , controlling for 𝛽𝑖,𝑆𝐾𝐸𝑊  

Excess return 0.88  0.67  0.38  0.43  0.05  -0.82  

 ( 1.51) ( 1.63) ( 1.03) ( 1.08) ( 0.09)  (-2.38) 

α-FF4 0.31  0.23  -0.06  -0.05  -0.51  -0.82  

 ( 1.46) ( 2.12)  (-0.58)  (-0.47)  (-2.48)  (-2.44) 
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Table 6 (continued.) 

 Panel D: 𝛽𝑖,𝑆𝐾𝐸𝑊×𝛽𝑖,𝑉𝑜𝑉 two-way sorted portfolios 

 Ranking on 𝛽𝑖,𝑉𝑜𝑉  

Ranking on 𝛽𝑖,𝑆𝐾𝐸𝑊 1 2 3 4 5 5-1 

1 0.96  0.80  0.38  1.00  0.19  -0.76  

 ( 1.33) ( 1.38) ( 0.72) ( 1.81) ( 0.30) (-1.48) 

2 1.33  0.73  0.29  0.06  0.18  -1.15  

 
( 2.12) ( 1.80) ( 0.76) ( 0.14) ( 0.33) (-2.17) 

3 0.36  0.66  0.35  0.43  -0.03  -0.39  

 
( 0.64) ( 1.79) ( 1.07) ( 1.13) (-0.05) (-0.82) 

4 1.15  0.48  0.66  0.48  -0.03  -1.18  

 
( 1.91) ( 1.24) ( 1.78) ( 1.20) (-0.06) (-2.70) 

5 0.58  0.67  0.25  0.21  -0.06  -0.64  

 
( 0.85) ( 1.28) ( 0.48) ( 0.39) (-0.08) (-1.27) 

5-1 -0.37  -0.12  -0.13  -0.79  -0.25  0.12  

 (-0.75) (-0.33) (-0.28) (-1.78) (-0.53) ( 0.18) 
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Table 7 The price of volatility-of-volatility risk 

Panel A reports the Fama–MacBeth (1973) factor premiums on 25 portfolios sorted on intersection of 

𝛽𝑖,𝑉𝐼𝑋 quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios, using our market-based three factors (MKT, 

ΔVIX, and ΔVoV), Chang, Christoffersen, and Jacobs (2013) market skewness factor (ΔSKEW), and 

Fama-French four factors (MKT, SMB, HML, and UMD). We estimate the first stage return betas using 

the daily full-sample post-formation value-weighted returns. Then, we regress the cross-sectional 

monthly portfolio returns on daily return betas from the first stage, using Fama–MacBeth (1973) 

cross-sectional regression. Panel B reports the Fama–MacBeth (1973) factor premiums on 25 portfolios 

sorted on intersection of 𝛽𝑖,𝑆𝐾𝐸𝑊 quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios. Robust Newey and 

West (1987) t-statistics with six lags that account for autocorrelations are reported in parentheses. The 

sample period is from January 1996 to December 2010. 

 

 Fama-MacBeth cross-sectional regressions 

 [1] [2] [3] [4] [5] [6] 

Panel A: 25 portfolios sorted on 𝛽𝑖,𝑉𝐼𝑋×𝛽𝑖,𝑉𝑜𝑉 (5×5) 

MKT 0.54 0.53 0.57 0.55 0.55 0.55 

 
( 1.34) ( 1.28) ( 1.41) ( 1.37) ( 1.36) ( 1.36) 

ΔVIX -5.31 
 

-3.14 -3.87 -3.97 -5.00 

 
(-3.29) 

 
(-1.61) (-0.94) (-0.95) (-1.14) 

ΔVoV 
 

-4.11 -3.66 -3.84 -3.88 -3.62 

  
(-3.25) (-2.35) (-2.68) (-2.66) (-2.68) 

SMB 
   

-0.93 -0.94 -0.94 

    
(-1.25) (-1.29) (-1.28) 

HML 
   

-0.27 -0.17 -0.45 

    
(-0.40) (-0.27) (-0.66) 

UMD 
   

-1.73 -1.65 -1.02 

    
(-1.58) (-1.47) (-0.96) 

ΔSKEW 
    

0.52 0.49 

     
( 0.50) ( 0.48) 

ΔKURT 
     

-15.54 

      
(-1.13) 

Adj. R2 0.13 0.10 0.18 0.24 0.24 0.25 
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Table 7 (continued.) 

 

 Fama-MacBeth cross-sectional regressions 

 [1] [2] [3] [4] [5] [6] 

Panel B: 25 portfolios sorted on 𝛽𝑖,𝑆𝐾𝐸𝑊×𝛽𝑖,𝑉𝑜𝑉  (5×5) 

MKT 0.48  0.45  0.61  0.43  0.64  0.64  

 
( 1.16) ( 1.12) ( 1.57) ( 1.06) ( 1.64) ( 1.63) 

ΔVIX 
 

-0.31  4.51  -0.79  8.47  8.46  

  
(-0.17) ( 1.27) (-0.45) ( 1.73) ( 1.62) 

ΔVoV -2.00  -2.07  -1.76  
 

-1.87  -1.86  

 
(-1.84) (-1.77) (-1.77) 

 
(-1.86) (-1.75) 

SMB 
  

-0.31  
 

-0.51  -0.50  

   
(-0.37) 

 
(-0.60) (-0.58) 

HML 
  

-1.40  
 

-0.87  -0.87  

   
(-2.30) 

 
(-1.32) (-1.24) 

UMD 
  

1.70  
 

2.33  2.33  

   
( 1.09) 

 
( 1.44) ( 1.43) 

ΔSKEW 
   

2.73  2.77  2.76  

    
( 2.53) ( 1.45) ( 1.36) 

ΔKURT 
   

5.69  
 

0.58  

    
( 0.59) 

 
( 0.05) 

Adj. R2 0.10  0.15  0.26  0.13  0.26  0.26  
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Table 8 Two-way portfolios sorted on volatility spreads and 𝜷𝒊,𝑽𝒐𝑽 

This table shows performance of portfolios sorted on implied-realized volatility spread (IVOL-TVOL), 

the call-put implied volatility spread (CIVOL-PIVOL), the expected individual variance risk premium 

(EVRP), and 𝛽𝑖,𝑉𝑜𝑉 using stocks with available equity options. We independently sort stocks into 

quintile portfolios based on each of the four variables, from the lowest (quintile 1) to the highest 

(quintile 5). All portfolios are rebalanced monthly and are value weighted. We compute the 

risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and 

UMD). Panel A reports the results for the one-way sorted portfolios. We construct two-way sorted 

portfolios formed on intersection of each of the volatility spread quintile portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile 

portfolios. Panel B shows the results for the 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios controlling for volatility spread 

quintile portfolios. Numbers in parentheses are t-statistics. The sample period is from January 1996 to 

December 2010. 

 

 Portfolios ranking   α-FF4 

 1 2 3 4 5 5-1 5-1 

Panel A: One-way sorted portfolios 

Ranking on 𝛽𝑖,𝑉𝑜𝑉 0.88  0.64  0.45  0.24  0.15  -0.73  -0.85  

( 1.68) ( 1.80) ( 1.31) ( 0.63) ( 0.28)  (-2.02)  (-2.38) 

Ranking on IVOL-TVOL -0.04  0.45  0.51  0.89  0.73  0.77  0.63  

  (-0.08) ( 1.17) ( 1.49) ( 2.38) ( 1.47) ( 2.10) ( 1.76) 

Ranking on CIVOL-PIVOL -0.24  0.17  0.44  0.69  1.15  1.39  1.66  

  (-0.51) ( 0.47) ( 1.20) ( 1.83) ( 2.33) ( 5.21) ( 6.70) 

Ranking on EVRP -0.24  0.29  0.55  0.73  0.93  1.16  0.96  

  (-0.39) ( 0.76) ( 1.50) ( 1.65) ( 1.41) ( 2.50) ( 2.21) 

Panel B: Two-way sorted portfolios, ranking on 𝛽𝑖,𝑉𝑜𝑉 

Controlling for IVOL-TVOL 0.97  0.77  0.45  0.32  0.28  -0.69  -0.76  

 ( 1.74) ( 2.00) ( 1.21) ( 0.82) ( 0.53)  (-2.11)  (-2.38) 

Controlling for CIVOL-PIVOL 0.82  0.60  0.50  0.31  0.16  -0.66  -0.74  

 ( 1.54) ( 1.54) ( 1.40) ( 0.78) ( 0.29)  (-2.03)  (-2.29) 

Controlling for EVRP 0.72  0.66  0.55  0.38  0.13  -0.59  -0.66  

 ( 1.33) ( 1.52) ( 1.33) ( 0.87) ( 0.25)  (-1.96)  (-2.20) 
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Table 9 Firm-level Fama-MacBeth regressions 

This table reports the results for the firm-level Fama-MacBeth regressions. We run the following 

cross-sectional regression: 

𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝑐0 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇,𝑡 + 𝜆𝑉𝐼𝑋𝛽𝑖,𝑉𝐼𝑋,𝑡 + 𝜆𝑉𝑜𝑉𝛽𝑖,𝑉𝑜𝑉,𝑡

+ 𝑐𝐹𝐼𝑅𝑀  𝐹𝑖𝑟𝑚𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡 + 𝑐𝑉𝑂𝐿  𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡 + 𝜀𝑖,𝑡+1, 

where the dependent variable is the monthly individual stock returns; 𝛽𝑖,𝑀𝐾𝑇,𝑡, 𝛽𝑖,𝑉𝐼𝑋,𝑡 , and 𝛽𝑖,𝑉𝑜𝑉,𝑡 

are post-ranking betas estimated from the 25 portfolios formed on intersection of 𝛽𝑖,𝑉𝐼𝑋 quintile 

portfolios and 𝛽𝑖,𝑉𝑜𝑉 quintile portfolios; 𝐹𝑖𝑟𝑚𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡 consists of Size, B/M, RET_2_12, and ILLIQ; 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑎𝑟𝑎𝑐𝑖,𝑡 includes IVOL-TVOL, CIVOL-PIVOL, and EVRP. Following the methodology of 

Fama and French (1992), we assign each of the 25 portfolio-level post-ranking beta estimates to the 

individual stocks within the portfolio at that time. Robust Newey and West (1987) t-statistics with six 

lags that account for autocorrelations are reported in parentheses. The sample period is from January 

1996 to December 2010. 

 

 Fama-MacBeth regressions: individual stocks 

 [1] [2] [3] [4] [5] [6] 

Intercept -2.14  -2.95  -2.58  1.33  1.39  1.39  

 
(-1.56) (-3.86) (-1.95) ( 1.03) ( 1.06) ( 0.99) 

logSize -0.05  -0.05  -0.05  -0.04  -0.04  -0.10  

 
(-0.78) (-0.75) (-0.82) (-0.53) (-0.54) (-1.06) 

logBM 0.26  0.27  0.26  0.15  0.14  0.06  

 
( 1.75) ( 1.76) ( 1.74) ( 0.99) ( 0.95) ( 0.36) 

RET_2_12 0.21  0.22  0.22  0.32  0.32  0.29  

 
( 0.57) ( 0.61) ( 0.60) ( 0.75) ( 0.74) ( 0.63) 

ILLIQ 0.02  0.02  0.02  -0.04  -0.04  -2.76  

 
( 3.51) ( 3.54) ( 3.53) (-0.29) (-0.26) (-0.29) 

𝛽𝑖,𝑀𝐾𝑇  2.47  3.30  2.93  -0.69  -0.72  -0.78  

 
( 1.74) ( 4.15) ( 2.10) (-0.50) (-0.52) (-0.53) 

𝛽𝑖,𝑉𝐼𝑋  1.50  
 

1.54  8.32  8.43  6.30  

 
( 0.36) 

 
( 0.39) ( 1.90) ( 1.90) ( 1.33) 

𝛽𝑖,𝑉𝑜𝑉  
 

-3.07  -3.07  -3.04  -2.96  -3.12  

  
(-4.07) (-4.17) (-2.74) (-2.67) (-2.57) 

IVOL-TVOL 
   

0.69  0.70  0.90  

    
( 2.16) ( 2.21) ( 2.75) 

CIVOL-PIVOL 
    

5.31  6.43  

     
( 8.09) ( 6.70) 

EVRP 
     

0.09  

      
( 2.22) 

Adj. R2 0.04  0.04  0.05  0.07  0.08  0.09  

No. obs. 824,428  824,428  824,428  310,221  310,221  241,096  
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Table 10 Portfolios sorted on 𝜷𝒊,𝑽𝒐𝑽
𝑽  

We sort stocks into quintile portfolios based on 𝛽𝑖,𝑉𝑜𝑉
𝑉 , from the lowest (quintile 1) to the highest 

(quintile 5). After the portfolio formation, we calculate the value-weighted daily 30-day model-free 

implied variance and monthly 30-day variance risk premium for each portfolio. The column “5-1” 

refers to the hedge portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we 

estimate the post-ranking variance betas by running the following regression using daily portfolio 

implied variance: 

𝛥𝐼𝑉𝑝,𝑡+1 = 𝛼𝑝
𝑉 + 𝛽𝑝,𝑉𝐼𝑋

𝑉 𝛥𝑉𝐼𝑋̃𝑡+1
2 + 𝛽𝑝,𝑉𝐼𝑋

𝑉 𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑝,𝑡+1
𝑉 . 

Numbers in parentheses are t-statistics. The sample period is from January 1996 to December 2010. 

 

 Portfolios ranking 
 

 1 2 3 4 5 5-1 

Panel A: Ranking on 𝛽𝑖,𝑉𝑜𝑉
𝑉  

EVRP(%2) 6.6 23.6 36.5 46.3 74.2 67.7 

 ( 4.24) ( 9.62) ( 9.83) ( 7.29) ( 5.35) ( 5.15) 

Post-formation daily variance beta 

𝛽𝑝,𝑉𝐼𝑋
𝑉   0.48  0.75  1.12  1.47  2.45  1.97  

( 94.24) ( 73.65) ( 62.04) ( 39.01) ( 43.77) ( 35.80) 

𝛽𝑝,𝑉𝑜𝑉
𝑉   2.73  4.12  3.35  5.71  11.06  8.32  

( 21.96) ( 16.52) ( 7.62) ( 6.18) ( 8.09) ( 6.19) 

Volatility characteristics 

IV 65.0  115.6  180.5  284.0  534.4  469.4  

ERV 58.4  92.0  143.9  237.7  460.1  401.7  

Panel B: Ranking on 𝛽𝑖,𝑉𝐼𝑋
𝑉  

EVRP(%2) 6.6 23.5 36.9 47.4 75.5 68.9 

 ( 4.23) ( 9.66) ( 9.76) ( 7.42) ( 5.37) ( 5.19) 

Post-formation daily variance beta 

𝛽𝑝,𝑉𝐼𝑋
𝑉   0.49  0.78  1.09  1.56  2.39  1.90  

( 97.63) ( 82.77) ( 61.10) ( 39.04) ( 45.45) ( 36.95) 

𝛽𝑝,𝑉𝑜𝑉
𝑉   2.86  3.79  4.17  5.00  10.44  7.58  

( 23.53) ( 16.46) ( 9.60) ( 5.13) ( 8.13) ( 6.02) 

Volatility characteristics 

IV 64.9  115.8  180.9  284.8  542.6  477.6  

ERV 58.3  92.2  144.0  237.4  467.0  408.7  
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Table 11 The price of volatility-of-volatility risk in cross-sectional EVRP 

This table reports the Fama–MacBeth (1973) factor premiums on 25 portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉
𝑉 , using 

our market-based three factors (MKT, ΔVIX, and ΔVoV), Chang, Christoffersen, and Jacobs (2013) 

market skewness factor (ΔSKEW), and Fama-French four factors (MKT, SMB, HML, and UMD). For 

each portfolio, we estimate the post-ranking variance betas by running the following regression using 

daily portfolio implied variance: 

𝛥𝐼𝑉𝑝,𝑡+1 = 𝛼𝑝
𝑉 + 𝛽𝑝,𝑉𝐼𝑋

𝑉 𝛥𝑉𝐼𝑋̃𝑡+1
2 + 𝛽𝑝,𝑉𝐼𝑋

𝑉 𝛥𝑉𝑜𝑉𝑡+1 + 𝜀𝑝,𝑡+1
𝑉 . 

Then, we regress the cross-sectional monthly portfolio expected variance risk premium on the 

post-ranking variance betas using Fama–MacBeth (1973) cross-sectional regression: 

𝐸𝑉𝑅𝑃𝑝 = −𝜆𝑉𝐼𝑋
𝑉 𝛽𝑝,𝑉𝐼𝑋

𝑉 − 𝜆𝑉𝑜𝑉
𝑉 𝛽𝑝,𝑉𝑜𝑉

𝑉 . 

In column from 4 to 6, we include the post-ranking return betas obtained from running regression using 

daily portfolio returns on the risk factors: 

𝐸𝑉𝑅𝑃𝑝 = −𝜆𝑉𝐼𝑋
𝑉 𝛽𝑝,𝑉𝐼𝑋

𝑉 − 𝜆𝑉𝑜𝑉
𝑉 𝛽𝑝,𝑉𝑜𝑉

𝑉 + 𝜆𝑀𝐾𝑇𝛽𝑝,𝑀𝐾𝑇 + 𝜆𝑆𝑀𝐵𝛽𝑝,𝑆𝑀𝐵 + 𝜆𝐻𝑀𝐿𝛽𝑝,𝐻𝑀𝐿

+ 𝜆𝑈𝑀𝐷𝛽𝑝,𝑈𝑀𝐷 + 𝜆𝑆𝐾𝐸𝑊𝛽𝑝,𝑆𝐾𝐸𝑊 + 𝜆𝐾𝑈𝑅𝑇𝛽𝑝,𝐾𝑈𝑅𝑇 . 

Robust Newey and West (1987) t-statistics with six lags that account for autocorrelations are reported 

in parentheses. The sample period is from January 1996 to December 2010. 

 

 Fama-MacBeth cross-sectional regressions 

 [1] [2] [3] [4] [5] [6] 

25 portfolios sorted on 𝛽𝑖,𝑉𝑜𝑉
𝑉  

𝛽𝑝,𝑉𝐼𝑋
𝑉   34.28   5.29  -34.11  -21.22  -20.66  

( 5.55)  ( 1.27) (-5.43) (-3.77) (-3.67) 

𝛽𝑝,𝑉𝑜𝑉
𝑉    5.99  5.20  2.74  1.62  1.53  

 ( 5.32) ( 4.04) ( 4.54) ( 2.36) ( 2.27) 

𝛽𝑝,𝑀𝐾𝑇       31.20  

     ( 4.58) 

𝛽𝑝,𝑆𝑀𝐵      9.51  80.73  71.21  

   ( 0.72) ( 4.53) ( 4.29) 

𝛽𝑝,𝐻𝑀𝐿     45.15  82.22  63.51  

   ( 2.03) ( 3.46) ( 3.16) 

𝛽𝑝,𝑈𝑀𝐷     -140.27  -47.56  -64.82  

   (-6.34) (-1.86) (-2.27) 

𝛽𝑝,𝑆𝐾𝐸𝑊      -100.91  -151.05  

    (-6.76) (-7.23) 

𝛽𝑝,𝐾𝑈𝑅𝑇      -528.89  -211.78  

    (-3.19) (-1.06) 

Adj. R2 0.34  0.39  0.55  0.73  0.77  0.77  
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Table 12 Return predictability regressions 

Panel A reports the estimates of the one-period return predictability regression using daily market 

return on the lagged variance risk premium (VRP), variance of market variance (VoV), market skewness 

(SKEW), and market kurtosis (KURT). In panel B, we use the monthly market return as the dependent 

variable, and the independent variables are sampled at the end of the previous month. We multiply 

Daily market return in Panel A is multiplied by 22. Robust Newey and West (1987) t-statistics with 

sixteen lags in Panel A and with six lags in Panel B that account for autocorrelations are reported in 

parentheses. The sample period is from January 1996 to December 2010. 

 

 Dependent variable= MKT (t) 

 [1] [2] [3] [4] [5] [6] 

Panel A: Daily return regressions 

Intercept -2.214  -0.970  0.123  -2.302  0.577  0.674  

 
(-2.82) (-1.50) ( 0.26) (-2.36) ( 0.30) ( 0.35) 

VRP (t-1) 0.153  
  

0.140  0.142  0.128  

 
( 3.81) 

  
( 3.86) ( 3.89) ( 3.45) 

VIX (t-1)  0.027   0.000  -0.001  -0.003  

  ( 1.95)  ( 0.00) (-0.06) (-0.15) 

VoV (t-1) 
  

5.406  4.939  4.980  5.054  

   
( 2.47) ( 2.12) ( 2.16) ( 2.19) 

SKEW (t-1) 
    

2.378  2.304  

     ( 1.50) ( 1.46) 

KURT(t-1)     0.121  0.136  

     
( 0.53) ( 0.60) 

MKT (t-1) 
     

-0.041  

      
(-2.23) 

Adj. R2 0.012  0.002  0.011  0.021  0.021  0.023  

Panel B: Monthly return regressions 

Intercept -0.369  0.604  0.280  -0.183  0.796  0.630  

 (-1.11) ( 1.13) ( 0.68) (-0.41) ( 0.59) ( 0.49) 

VRP (t-1) 0.045    0.041  0.041  0.039  

 ( 5.47)   ( 4.68) ( 4.24) ( 3.82) 

VIX (t-1)  -0.004   -0.004  -0.004  0.001  

  (-0.34)  (-0.59) (-0.62) ( 0.18) 

VoV (t-1)   1.682  1.246  1.352  1.460  

   ( 3.06) ( 2.44) ( 2.61) ( 2.53) 

SKEW (t-1)     0.008  0.004  

     ( 0.52) ( 0.28) 

KURT(t-1)     0.000  0.000  

     ( 0.21) (-0.23) 

MKT (t-1)      0.124  

      ( 1.52) 

Adj. R2 0.047  -0.004  0.009  0.044  0.036  0.041  
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Figure 1. Daily market volatility-of-volatility (VoV). We plot daily market volatility-of-volatility over 

the time period January 1996 through December 2010. We partition the tick-by-tick S&P500 index 

options data into five-minute intervals, and then we estimate the model-free implied variance for each 

interval. For each day, we use the bipower variation formula on the five-minute based annualized 

30-day model-free implied variance estimates within the day, resulting in our daily measure of market 

volatility-of-volatility (VoV). 
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Figure 2. Performance of portfolios sorted on 𝜷𝒊,𝑽𝒐𝑽 in event time. At the end of each day, we 

estimate the regression of equation (33) using daily stock returns over the past 22 days. We then sort 

stocks into quintile portfolios on the estimated 𝛽𝑖,𝑉𝑜𝑉 for each day and calculate the event-time daily 

value-weighted portfolio returns ranging from -11 to 11 in days. 
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Figure 3. Cross-correlations. The plots are based on the pre-formation and post-formation of quintile 

portfolio return differentials (low-minus-high; long the lowest quintile and short the highest quintile) 

formed on 𝛽𝑖,𝑉𝑜𝑉. The top panel shows the sample cross-correlation between the VIX and portfolio 

formation time leads and lags of the low-minus-high ranging from -11 to 11 days. The bottom panel 

shows the sample cross-autocorrelations between the market volatility-of-volatility (VoV) and the 

returns. 

 

 

 


